A Model for Boron T.E.D. in Silicon: Full Couplings of Dopant with Free and Clustered Interstitials

Introduction

In this contribution we present a model for transient enhanced diffusion of boron in silicon. This model is based on the usual pair diffusion mechanism including non-equilibrium reactions between the dopant and the free point defects, taking into account their various charge states. In addition to, and fully coupled with the dopant diffusion we model the growth and dissolution of the interstitials and boron interstitials clusters associated with the anneal of the self-interstitial supersaturation created by the implantation step. It is thus possible to simulate a rather large set of experimental conditions, from conventional predeposition steps, to RTA after low energy implantation.