Reducing Organic LED Fabrication Time and Cost via Multi-Scale Flow Simulation
April 2nd 2020 | 10:00 am – 11:00 am (PDT)
Drift diffusion simulations are widely applied to study multilayer organic LED devices, whereas microscopic methods are often restricted to the computation of single molecule properties that cannot directly be translated to the device scale. In this webinar, we present an automated interface flow from microscopic to TCAD simulation, in order to bridge this gap and enable device designers to analyze the impact of microscopic molecular properties on device performance.
TCAD Simulations of RF-SOI Switches with Trap-Rich Substrate
The market for cellular components has been shifting rapidly from GaAs pHEMT or silicon-on-sapphire (SOS) to silicon-based technology. CMOS (silicon-on-insulator) SOI antenna switches which are compatible with multimode GSM/EDGE, TD/WCDMA, and LTE systems exhibit higher integration levels and have become the fastest growing mobile phone submarket. CMOS-SOI processes, especially with thin silicon, have the potential to rival the FoM that was traditionally feasible only with GaAs technologies.