For Next Generation Nanowires, Simulation from Atoms to SPICE
As process nodes continue to shrink, the requirement for additional physics-based simulation is gradually creeping into each stage of the design process. By way of illustration, Technology Computer Aided Design (TCAD) simulations are becoming more atomistic in nature, SPICE models are becoming process aware to take account of localized strain effects, and back or middle end of line (BEOL or MEOL) parasitics are moving from exclusively two-dimensional (2D) rule-based solutions to full 3D structure field solvers for numerous critical sections of the layout.
Atomistic Analysis and Next Generation Computing at IEDM 2019
IEDM is THE device conference with more than a thousand participants from major companies and R&D institutes. Many talks were dedicated to new memory devices and circuits, including Ferroelectrics, MRAM, RRAM, driven by the requirements of AI processing. EUV is definitely there for 3nm and beyond. 3D integration was shown for LP-HP logic and RF. Gate-All-Around devices, with nanowires or nanosheets are mature versus FinFET.
TCAD Recommended Textbooks
CMOS: Mixed-Signal Circuit Design, Second Edition
R. Jacob Baker.
Published…
Silvaco Exhibits and Presents Invited Paper on Atomistic Simulation at IEDM 2019
The IEEE International Electron Devices Meeting (IEDM) is the world’s preeminent forum for reporting technological breakthroughs in the areas of semiconductor and electronic device technology, design, manufacturing, physics, and modeling. It is the flagship conference forNanometer-scale CMOS transistor technology, advanced memory, displays, sensors, MEMS devices
Novel quantum and nano-scale devices and phenomenology
Optoelectronics, devices for power and energy harvesting, high-speed devices
Process technology and device modeling and simulation
SiC and Other Wide Bandgap Materials: From Process to Device Simulation
This webinar provides an overview of Silvaco’s TCAD tools. It introduces Silvaco’s process and device simulation capabilities for wide bandgap materials. In addition, various practical examples are demonstrated and discussed, such as SiC JBS diodes and GaN FETs.
How TCAD Can Optimize Power Electronics
The power electronics (PE) market is growing rapidly, driven by the accelerating demand of EV and HEV vehicles. Power devices lend themselves to design and manufacturing innovations at the transistor-level to improve device performance and reduce development and production costs. Silicon-carbide (SiC), gallium-nitride (GaN), and other wide bandgap materials have started to replace silicon in high-voltage power devices.
The Need for Advanced Wide Bandgap Power Electronics
PowerAmerica’s strategic roadmap for next generation wide bandgap (WBG) power electronics (PE) came out earlier this year. The public version of the roadmap includes a background/introduction and market forecast pertaining to silicon carbide (SiC) and gallium nitride (GaN) PE. I learned a great deal about SiC & GaN PE in this roadmap and I have copied the relevant sections below.