엔트리 Erick Castellon

안전한 자율주행을 위한 IP 솔루션

2019년 12월 13일 | 3:00am-3:30am (한국 시각)
가상 물리적 차량 시스템의 보안에 대한 위험과 대책을 제시합니다. 제조업체들은 인포테인먼트, 5G 네트워크 연결, 첨단 운전자 지원 시스템(ADAS), 자율주행 등의 최신 기능을 자동차에 빠르게 통합해야 한다는 고객의 요청과 시장 경쟁에 직면하고 있습니다. V2X (Vehicle-to-Thing) 연결성을 높이면 중요한 차량 네트워크에 액세스할 수 있습니다. ADAS 및 자율 주행 기능은 자동차의 물리적 제어를 소프트웨어 서브시스템에 제공합니다.

Silvaco Exhibits and Presents Invited Paper on Atomistic Simulation at IEDM 2019

The IEEE International Electron Devices Meeting (IEDM) is the world’s preeminent forum for reporting technological breakthroughs in the areas of semiconductor and electronic device technology, design, manufacturing, physics, and modeling. It is the flagship conference for

Nanometer-scale CMOS transistor technology, advanced memory, displays, sensors, MEMS devices
Novel quantum and nano-scale devices and phenomenology
Optoelectronics, devices for power and energy harvesting, high-speed devices
Process technology and device modeling and simulation

Next Generation CMOS Nanowire: From Atoms to Circuit Simulation

Abstract— A complete simulation flow for a Nanowire-based ring oscillator circuit is presented, where the active devices were simulated using an atomistic device simulator. The results of this simulation have been fitted to an active device SPICE compact model, specifically formulated for nanowire/Gate all around Field Effect Transistors” (FETs). Finally, the active devices were incorporated into a SPICE netlist including back end resistance and capacitance parasitics.

Optimization of Select Gate Transistor in Advanced 3D NAND Memory Cell

Abstract—There are several device challenges unique to the select gate transistor in 3D NAND memory cell. It requires low leakage current to prevent read and program disturb problems and it needs to provide enough current during read and erase operation. In this paper, we examined the design optimization of select gate transistor with respect to various device elements including work-function, S/D overlap, and trap density. Finally, we reviewed the path to reduce the channel length of the select gate transistor in conjunction with the role of dummy cells.

Estimation of Interface Property Changes Between Normally On/Off Hydrogenated Diamond MISFETs

Introduction
Diamond is considered to be the ultimate semiconductor material for high power and high frequency devices due to its superior electrical and thermal properties, such as high breakdown field, high carrier mobility, low dielectric constant, and high thermal conductivity, as shown in Table 1.

Furthermore, diamond has some unique electronic properties. The surface of diamond films terminated by hydrogen atoms has negative electron affinity (NEA) and can generate a two-dimensional hole accumulation layer suitable as a hole channel of a field-effect transistor.

TCAD Simulation of Electric Field Distribution in Gallium Nitride Trench-based Power Devices

Introduction

Gallium nitride (GaN)-based devices are excellent candidates for high-voltage and high-power applications, due to the superior physical properties of GaN compared to Si, SiC, and GaAs. Recently, GaN vertical devices have attracted increased attention, due to their advantages over GaN lateral devices, including high breakdown voltage (BV) and current capability for a given chip size, and superior thermal performance.1 Recent demonstrations of high-performance vertical GaN diodes2–4 and transistors5–9 have made vertical structures very promising for GaN power devices.

Channel-length Dependence of a-IGZO TFTs with Self-heating Effects

Introduction

Amorphous In-Ga-Zn-O thin-film transistors (a-IGZO TFTs) show a high mobility, a small sub-threshold swing, and a low OFF-current, and they are considered to be one of the most promising TFT for new flat-panel displays (FPDs). The high mobility originates from the unique electron transport in a-IGZO. The transport properties are different from those in conventional semiconductor materials like Si, for example, the mobility increases with increase of the electron concentration and/or temperature. Therefore, the new mobility model for a-IGZO is necessary. In addition, as pixel sizes in the FPDs decreases, a channel-length, L, of a-IGZO TFTs becomes shorter. It indicates that it is important to understand the operation of short-channel a-IGZO TFTs.