エントリー - Graham Bell

RF CMOS Modeling Using UTMOST III AC (S-Parameter) Module

This article presents a high frequency SPICE model parameter extraction method for CMOS devices. Current compact MOS models are developed for low frequency applications and provide good fits for DC, conductances and intrinsic capacitances. However for the gigahertz frequency range external components have to be modeled and added to the compact model as macro model elements. The macro model presented in this article provides good results up to 10 GHz.

BSIM4_U ( BSIM4 Universal Routine )

This routine is a multitarget/geometry routine used to extract all kind of characteristics. There is the possibility to trace three different targets. This routine is based on full SMU definition. This definition could be done for 3 different targets grouped together in 4 different setup. It means that 12 different bias conditions can be defined. One device is associated with one setup therefore with one, two or three targets.Application

This routine is a multitarget/geometry routine used to extract all kind of characteristics. There is the possibility to trace three different targets. This routine is based on full SMU definition. This definition could be done for 3 different targets grouped together in 4 different setup. It means that 12 different bias conditions can be defined. One device is associated with one setup therefore with one, two or three targets.

Measure CJSWG (CJGATE) Capacitance using UTMOST III

For the UTMOST III versions greater than 17.2.0.R, the UTMOST users can measure the CJSWG (CJGATE) capacitance using the “CJ/CJSW” routine. The CJ/CJSW routine in MOS technology has been modified to measure the CJSWG (Peripheral portion of the junction capacitance under the gate) capacitance.

Cross-Sectional Viewer in Expert

Cross-Sectional Viewer is a tool within Expert to simulate the cross sectional view of ICs along an arbitrary drawn cut-line on the layout. Cross-sectional Viewer is a link between the layout and the resulting device. It allows the designer to examine cross-sections of the device being designed. Cross-sectional drawings are useful for understanding design rules, parasitic coupling and other design and fabrication problems.

Yield Analysis and Performance Optimization Using FastBlaze and SPAYN

In previous Simulation Standard articles (Nov 97 & Nov 98) FastBlaze has been presented as a new, highly efficient approach to simulating advanced HEMTs and MESFETs. Conventional device simulators often suffer from slow execution times, leading to a trade off between mesh density and physical model complexity against CPU run time and convergence. This requires engineers to compromise accuracy to achieve a reasonable throughput.