• Simulation Standard Technical Journal

Simulation Standard

Technical Journal

A Journal for Process and Device Engineers

A Box Method Discretisation for the Drift-Diffusion Equations in a Magnetic Field

The problem of discretising the semiconductor drift-diffusion equations in the presence of a uniform magnetic field using the Box Method has previously been addressed in the literature. For the case of a rectangular non-uniform grid in 2D see[1], and for a general triangular mesh see[2]. These methods have also been extended to 3D [3],[4]. We have implemented and analysed these methods and found them all to be flawed in some way. In this paper we describe the established discretisations and elaborate on their flaws. We then briefly describe the new discretisation developed by Silvaco, and give some examples of its use.

Simulation of Resonant Tunneling Diodes Using ATLAS

This article describes a model for Resonant Tunneling Diodes (RTDs) implemented within ATLAS framework. The model is based on a self-consistent solution of Poisson and Non-Equilibrium Green’s Function (NEGF) equations with an effective mass Hamiltonian. Simulation results are presented for generic GaAs and SiGe RTDs.

Modeling and Optimization of CIGS Solar Cell Module

Solar cells manufactured from wafers of crystalline or polycrystalline silicon are today the dominant technology in the commercial market. Solar cells based on thin film semiconductor are another technology with great potential. One such technology is based on a compound of the elements copper, indium, gallium and selenium abbreviated Cu(in,Ga)Se2 or CIGS. Two advantages of this technology are the low material consumption and the high efficiency that has been demonstrated, which both make it economically competitive. The objective of this article is to simulate a CIGS Solar cell module taking into account electrical, optical and geometrical parameters in order to optimize his design.

Using VICTORY PROCESS for Rapid Geometry Prototyping

The fully three-dimensional process simulator VICTORY PROCESS allows user to perform a wide range of manipulations of the structure’s geometry in order to obtain the device of the desired shape. Most of the supported operations correspond to real technological processes (etching or deposition, CMP, epitaxy and others) so in many cases an engineer can establish a direct link between the technological processes step and an input deck statement of VICTORY PROCESS.

3D SOI NMOSFET Simulation Using VICTORY DEVICE

SOI MOSFETs can exhibit a kink in their Id/Vd curves, which is caused by impact ionization, floating potentials, and other effects. One way of suppressing this kink effect is to supply the device with a body contact. With a body contact, however, the geometry of the device becomes fully three dimensional. In this paper, we show how an SOI MOSFET with a body contact can be simulated in VICTORY DEVICE. 3D visualizations from the VICTORY DEVICE results illustrate how the body contact acts to suppress the kink effect.

Crosstalk Simulation in InSb Detector Arrays

Crosstalk is one of the main parameters that critically affect the resolution of detector arrays. It results in a reduction in image clarity, thus degrading system performance. There are two type of crosstalk; optical crosstalk and electrical crosstalk. Optical crosstalk includes the effect of photon refraction, reflection at boundaries, and external and internal scattering in detector arrays. Electrical crosstalk is attributed to carriers that are photogenerated under one detector, diffusing and being collected by another detector in the array.