• Simulation Standard Technical Journal

Simulation Standard

Technical Journal

A Journal for Process and Device Engineers

TCAD Simulation of Si and GaAs p-n Junction Devices at Cryogenic Temperatures, Down to 2 K

Cryogenic electronics plays a fundamental role in several applications, such as spacecraft, high-energy physics experiments, metrology, superconductive astronomical detectors and, with the increased interest in quantum computing, the manipulation of quantum bits (qubits) [1]. Outstanding characteristics have been reported for advanced CMOS technologies operating at cryogenic temperature in terms of on-state current, leakage current, subthreshold swing, and transconductance [2]. This represents an excellent opportunity to use such advanced technologies to design and implement a quantum computing control system (including multiplexers, LNAs, and RF oscillators) and introduce it inside the refrigerator together with the qubits [3]. Another recently growing field of application is the cryogenic silicon photonics [4].

Bi-axial Deformation with Victory Mesh for Flexible Electronic Applications

For high performance large area flexible electronics, amorphous metal oxide semiconductor based thin film transistors offer many advantages. These include high mobility, steep sub-threshold and ultralow leakage current, with low cost and large area manufacturability.

TCAD-based GaN HEMT Scalable Modeling Flow Using the MVSG Compact Model

Gallium Nitride High Electron Mobility (GaN HEMT) device technology has gained a lot of traction during the last years. These devices have significant advantages compared to Silicon in user applications such as high frequency/high power amplifiers, radar systems, power conversion and applications where stability over a wide range of temperatures is required, such as automotive-related.

Hints, Tips and Solutions – Adding Random Noise to Mask Layout

Geometrical module of Victory Process allows the fast and accurate transfer of mask patterns to the structure. However, sometimes it is necessary to emulate the imperfections of physical processes while retaining the speed and accuracy of the geometrical approximation. For example, you may want to test the tolerance of the final device to random fluctuations in structure’s geometry.

Advanced Process and Device 3D TCAD Simulation of Split-Gate Trench UMOSFET

Lower conduction loss and fast switching characteristics for power devices are increasingly required in the more and more energy-conscious world. For the low to medium voltage ranges (12 V ~ 250 V), the split gate structures [1] have become prevalent in the power MOSFET technologies [2-4]. They allow to achieve the best trade-off between the breakdown voltage (BV) and specific on-state resistance (RSP) for the vertical discrete power MOSFETs. Most of these solutions are based on the RESURF (Reduced Surface Field) action of Split-Gate Resurf Stepped Oxide (SG-RSO) along the drift region.

Using TCAD to Reverse Engineer a 2N2222 BJT for Proton Damage Simulations

It is often the case, that an Engineer is required to simulate environmental effects on a device manufactured by a third party.  In such an event, the first issue that is faced by the Engineer, is a lack of access to the manufacturing process that created the third party device in the first place.  In this article, it is shown how to overcome this first issue, and reverse engineer a sufficiently representative base device, simply from the manufacturer’s specification sheet.  Once a satisfactory device has been fabricated, it can be used in the required simulation to analyze any effects of interest.  In this particular case, we will demonstrate the damaging effects of irradiating a 2N2222A bipolar transistor with a proton flux and compare the simulated results with other similar measured results.