Using VICTORY Process to Model the Effect of Silicon Substrate Orientation on Oxidation Kinetics

Introduction

Different crystal planes of silicon are known to have different oxidation rates, e.g. the silicon plane with Miller indices <111> is oxidized approximately 1.7 times faster then the <100> plane [1][2]. During an oxidation process the geometry of a 3D structure may change significantly and the silicon/oxide interface may pass through various crystal planes with different oxidation rates. Therefore, the orientation and type of the silicon wafer affects the resulting geometry of an oxidized structure on this wafer. This paper explains in details how VICTORY Process can be used to model this anisotropic behaviour.

Physical Model

VICTORY Process offers several modes for the simulation/emulation of an oxidation process, namely