Parasitic Extraction

Full Chip and Cell Level RC Extraction
Contents

• Introduction
• Simulation Methodologies
 • Rule Based
 • Parasitic database generation
 • Field Solver
 • Field solver methods
 • Boundary element or finite element
• Summary
Introduction

• Many solution methodologies for RC extraction (RCX)
• Optimize solution methodology for each application
• A common platform maximizes user choice
• Consider intended user skill set, CAD versus TCAD
• Consider size and topology, versus simulation speed
• How much accuracy is really needed
• User choices are often technology dependent
Solution Methodologies

- Rule based (fastest) or Field solver based (most accurate)
Rule Based

- Capacitance – extract geometry from layout polygons
- Resistance – count conductor length in “squares”
- Coefficient database converts polygons into C & R values
Parasitic Database Generation

- Generating the capacitance coefficient database for rule-based extraction requires a field solver
- One time per technology
- Silvaco ‘Exact’ tool
Field Solver Methods

- Field solver’s have several methods to apply the physics to the physical representation of the structure
- Field solvers extract both capacitance and resistance
- Finite Difference and Finite Element Methods are:
 - Optimal for complex and curved 3d shapes
- Boundary Element and Random Walk Methods are:
 - Optimal for squared off “Manhattan” shapes
- Simulation speed versus shape complexity trade-off
- Silvaco tools use field solvers from both categories
Boundary Element or Finite Element?

- For uniform layer thickness and Manhattan shapes
- Boundary Element Method

- For complex 3D shapes
- Finite Element Method
Summary

• Rule based extraction used for most of the full chip
• Field solver based extraction for complex R & C layout
 • Highest accuracy is required for critical cells
• Mix and match techniques within one design

• Typical maximum cell size illustration for using field solver techniques