Optical Simulations

Light Emitting and Absorbing Devices
Contents

• Light Models
• Light Adsorption
 • Solar cells
 • Image sensors
 • Liquid crystal
• Light Emission
 • Light emitting diodes
 • Edge emitting lasers
 • Vertical cavity surface emitting lasers
• Waveguides
• Summary
Light Models

- Optical simulation methods ranked from fast and less physical, to slower and fully physical.

- Ray tracing – Fast, but no physical interference
- Transfer matrix method – Interference effects only calculated in the ray propagation direction
- Beam propagation method – 3D interference, but only valid for narrow propagation angles, such as waveguides
- Finite Difference Time Domain – Full 3D Physics
Light Adsorption – Solar Cells

• Many material and design types used in solar cells
 • Solar spectra
 • Triple cells
 • Anti-reflective
 • Surface roughness
 • Lens
 • Material database
Light Adsorption – Image Sensors

- Efficient large structure 3D builder
- Areal maximum potential surface response
- Transient simulations
• DC, transient and light transmittance LC director response
Light Emission – Light Emitting Diodes

- Many different material systems and designs
- Far and near field intensity
- Quantum effects
- Self heating
Light Emission -VCSEL

- Mode solver
- Self heating
- DC & transient
- Spectra
Waveguides

- Mode solvers
- Suitable for the beam propagation method
Summary

• Integrated solution – no hopping between tools
• Self consistent solutions – Electrical, Optical, Thermal
• Active and passive optical devices possible
• Many different light propagation methods
• Large material database
• Efficient 3D structure creation methods
• Design of Experiments environment