SILVACO

Application Note

Creating Lisa Scripts to Automate
Layout Operations in Expert

Introduction

Many layout design tasks in Expert can be automated
using the Lisa command language. Creating Lisa Expert
Interface (XI) scripts for repetitive manual tasks can re-
duce project time and increase layout quality by reducing
the chance of manual layout errors. Since Expert menu
commands can be replicated using Lisa commands, an
XI script can be created to automate almost any layout
task. Once written, these scripts can be quickly modified
for use in different design projects including ones with
different technology process nodes.

Two Xl script examples are provided to show how short
Lisa scripts can perform layout operations that would be
very time consuming if done manually. These examples
contain several basic Lisa commands that can be ap-
plied to various tasks that may arise during the layout
phase of a design project.

Creating a Lisa Xl Script

Expert has a built in XI script editor that can be opened
using the following menu selection: Tools >> XI| Script >>
Script Panel, shown in Figure 1. The Expert User Manual
contains a chapter devoted to Xl scripts and provides the
syntax to access Expert functions using Lisa commands.
Once a script is written it can be executed by clicking the
“Run” icon on the Script Panel tool bar, or by selecting
Script >> Run in the menu.

T Expert 4.4.20 (build 1325): [ndl_ex]

File Cell Edit View Select | Tools Hierarchy Verification Libraries PCell Setup Window Help

IBOHE sB&R: teare 'V PME[He|BBE

leglsealP
X0 ¥i-Command Line %

| X=[18.3850 Cross Sectional Viewer
Y7 Expertlog

J Netlist Driven Layout

Placer{Compactor Return

[] CutByLine

Cut By Line Modes »

Cut By Vertices Count »
= Clip Out

@ dipln
Figure 1. Accessing the Xl Script Panel.

Memory Array Text Labeling Example
Script

The first X| script example shown in Figure 2 is a short
Lisa script that opens a user specified layout cell con-
taining an array of memory cells and places incremented
text labels on the memory bit line and word line signal
paths. The use of text labels on signal nodes can greatly
improve LVS debugging, but the placing of these labels
on large arrays found in memory designs would take a
prohibitive amount of time if done manually.

The beginning of the script defines the variables that will
be used later in the code. After the variable definition
statements, the script uses the “cell open” command to
open the memory array layout that will be edited. This
script does not load the project database .eld file, and so
it is left to the user to load the database before executing
the script. The .eld file can be loaded in the Xl script us-
ing the following command syntax:

PROJECT LOAD proj name [tech name] [/
outputname=output_ name] [/readonly]

I This script labels row and column bit line
I and word line with text labels

bl_pitch= 7.4;

wl_pitch= 7.8;

Xorg=-1.2;

Yorg=0;

bl_num=0;

wl_num=0;

cols=h4;

rows=64;

cell_name="array_top";
cell open (cell_name);

LOOP BEGIN Ibit line loop
IF (bl_num EQL cols) THEN (leave loop);
text (Xorg+bl_num*bl_pitch) (Yorg-3) ("bl_"&bl_num)
/height = 2 /width = 0.8 /bottomcenter /layer = "metall";
bl_num=bl_num+1;
END; lend of bit line loop
LOOP BEGIN lword line loop

IF (wl_num EQL cols) THEN (leave loop):
text (Xorg) (Yorg+wl_num*wl_pitch) ("wl_"&wl_num)
\/height = 2 /width = 0.8 /bottomright /layer = "poly";
wl_num=wl_num+1;
END; lend of word line loop

Figure 2. Text Labeling XI Script.

Copyright © 2020 Silvaco Inc.

Figure 3. Layout View of Labeled Array.

Next is the “LOOP BEGIN” statement that will loop
through each of the bit line columns and place a text
label on the metal1 vertical bit line. The text begins as
“bl_0”" and is incremented each time through the loop.
The same procedure is used to place text labels on the
rows of poly word lines. A close-up view of the resultant
layout is shown in Figure 3.

Contact Search and Replace Example
Script

The second example Xl script performs the task of resiz-
ing contact shapes in a layout database by searching for
any contact shape of a certain size and replacing that
shape with an instance of a layout cell containing the new
contact. The code for this example is found in Figure 4.

A list of all cells in the currently loaded layout database
is stored in the array variable “cells” by using the “get_li-
brary_cell_list” command. Then a loop is created that
iterates through each of the entries in the “cells” array
variable and performs a search for all drawn contacts
of 0.6um size by using the “find objects” command with
specific search criteria. A second nested loop begins if
the “find objects” search results has a size greater than
zero, indicating that a 0.6x0.6um contact was found in
the cell. Inside the loop, the “Select Object” command
selects each shape that was found and deletes it. By us-
ing the stored X and Y position values returned by the
search, an instance of a contact that is the correct size of
0.4um is placed at the origin of the deleted shape.

SILVACO

I Script to replace a flat contact shape with

| an instance of a smaller contact

cells = get_library_cell list(""); | store all cells in array "cells"
i=1;

LOOP BEGIN Iloop through all cells

cell open (cells[i]):
DISPLAY (cells[i]):
cont_0Op6 = (find objects (SEARCH_BOX)

/criteria = ({search_criterion_create(0OA_LAYER, "contact", EQ),
search_criterion_create (OA_SIZEX, 0.6, EQ),
search_criterion_create(OA_SIZEY, 0.6, EQ)}) /seq_output

):

num_cont=cont_0Opb.size;

DISPLAY (num_cont);

IF ((cont_Op6.size) NEQ 0) THEN BEGIN
=1

LOOP BEGIN

Select Object (cont_Op6[j]);
pt=cont_0Op6[j].position;
DELETE SELECTION;

instance (pt.x) (pt.y) /cell="cont_0Op4";
=i+l
IF (j EQL {num_cont+1)) THEN (leave loop):
END; lend of loop to delete 0.6um contact and replace
lwith "cont_Op4" instance
END; lend of condition where num_cont > 0 in a cell
cell close;
i=1+1;

IF (i EQL (cells.size)) THEN (leave loop);
END ;

Figure 4. Contact Replacement XI Script.

The example of the “find objects” command used in
Figure 4 can be modified to apply to any number of
tasks that require searching through a large layout cell
or an entire layout database to find specific layout ob-
jects including shapes, wires, text, and instances that
match a series of user defined search criterion.

Conclusion

Creating Xl scripts with Lisa code is an economical way
to perform systematic and repetitive layout functions in
Expert. The two examples shown above illustrate how
several basic Lisa commands are used to create proce-
dures that automate design tasks that would be very time
consuming if done manually. Investing a small amount of
time to create an Xl script that can be reused throughout
a project and even migrated to future projects can have a
substantial impact in reducing the cycle time of the layout
phase of a design.

Page 2 Copyright © 2020 Silvaco Inc.

