
Copyright © 2023 Silvaco Inc. Page 1

Introduction
In recent years, Verilog-AMS hardware description language
(Verilog-A) has been widely used in analog and mixed-sig-
nal design. Correspondingly, most EDA vendors provide
simulation tools for Verilog-A. As one of those vendors,
Silvaco also added support for Verilog-A in SmartSpice
several years ago. Recently, a Verilog-A debugger (VA-
Debugger) has been developed and added as a com-
ponent of SmartSpice. VA-Debugger is a convenient
and powerful tool for debugging Verilog-A source code
during simulation. It can help a designer to locate a de-
sign issue quickly and greatly improve efficiency. In this
note, several important aspects of VA-Debugger will be
introduced.

Steps to Invoke VA-Debugger
As a component of SmartSpice, VA-Debugger can’t be
invoked directly. Several steps must be followed to run
the debugger:

1) 	 Verilog-A option “-debug” needs to be set for the
Verilog-A file. There are three ways to set it:

a) in the netlist file with a .options command:

	 .options veriloga-args=“-debug”

b) in the netlist with a .verilog command:

	 .verilog “<file-name-string>” –debug

c) set environment variable SILVACO_VERILOGA_
ARGS to ‘-debug’. Example under UNIX:

	 %setenv SILVACO_VERILOGA_ARGS -debug

By setting this option, a Verilog-A source file will be pro-
cessed without optimization, and the necessary debug
information will be generated.

2) 	In a SmartSpice window, choose the pull-down
menu Edit->Preferences and check the box “En-
able debug info generation” as shown in Figure 1.

This preference setting will be saved when you exit Smart-
Spice and will be restored when you run SmartSpice again.

3) 	 After the input deck is loaded, click the ‘Debug…’
button under ‘Analysis’ menu as shown below to run
simulation with Verilog-A debugger

Introduction to VA-Debugger

Application Note

Copyright © 2023 Silvaco Inc.

Figure 1. Set preference for VA-Debugger.

Figure 2. Menu to run VA-Debugger.

However, if no Verilog-A source file in the current input
deck is processed in “-debug” mode as specified in step
(1) VA-Debugger will not be invoked and the simulation
will run in optimization mode since debug information is
not generated for Verilog-A source files.

Copyright © 2023 Silvaco Inc. Page 2

Conditional breakpoints are very useful in debugging and
VA-Debugger also supports these. There are two ways to
open the dialog box to set a conditional breakpoint. One is
to right-click on an existing breakpoint and choose Break-
point->Properties from the menu.

Another way is to choose a breakpoint from the break-
point list in breakpoint window and clicking the “proper-
ties” button to get the dialog box.Figure 3. Status bar.

Figure 4. One way to invoke breakpoint setting dialog window.

Status Information Description
At the bottom of the VA-Debugger window there are
a few status bars. Three of those bars have special
meanings.

Figure 5. Another way to get a dialog box for setting a breakpoint.

Figure 6. Dialog box for setting a Breakpoint.

In the dialog box, there is a “Condition” field, where a
conditional expression can be typed in. The conditional
expression must be a logical expression that can be
evaluated into a Boolean value. If the conditional ex-
pression can’t be evaluated correctly (wrong expres-
sion type, unknown symbol in expression, etc.), this
breakpoint will be removed and a message will be dis-
played in the “Input/Output” window.

To help users to compose conditional expressions more
easily, a “context” window is provided inside the break-
point setting dialog box. The “context” window can be
expand/hide by clicking the “context” button in the break-
point setting dialog window.

The context window displays a list of variables and their
values. The variable name or value can be easily insert-
ed into the conditional expression field by right-clicking
on a variable and choosing “Insert name” or “Insert val-
ue” from the menu. This design saves the work of copy-
ing and pasting and avoids switching between windows.

$CST: 	 Current simulation time
$CI: 	 Iterations in current simulation time
$TI: 	 Total iterations

If any value of those variables changes, it will be high-
lighted in red, otherwise it will be displayed in black. This
design helps users to monitor the progress of the simula-
tion while paying minimal attention to actual numbers.

It is worth mentioning how $TI is updated in VA-Debug-
ger. This variable counts only effective simulation itera-
tions and it only updates once after simulation finishes
in one time spot. This means that if the simulation can’t
converge at some time spot after several iterations,
these iterations will not be counted in $TI. The value of
$CI updates with every iteration, no matter if the simula-
tion converges or not. Therefore, the value of $TI does
not synchronize with $CI, which is normal here.

Set Breakpoint
Like every debugger, VA-Debugger provides several ways
to set and configure a breakpoint. The most popular and
convenient way to set a breakpoint is left-clicking the mouse
in front of a source code line. A “stop” mark will show in front
of that line if a breakpoint is successfully set. If a line doesn’t
contain debug information, like port and variable declara-
tions, a breakpoint can’t be set at that line.

Copyright © 2023 Silvaco Inc. Page 3

Conclusion
In this application note, VA-Debugger is introduced by
highlighting several features. The first section lists three
steps the user needs to follow to correctly run VA-De-
bugger from SmartSpice. The second section describes
three special variables in the status bar and explains
how their values are updated. Finally, how to set a break-
point, especially how to set a conditional breakpoint, is
presented.

Figure 7. Context window.

Rev 072709

