
Copyright © 2023 Silvaco Inc. Page 1

Introduction
Although models written in Verilog-A particularly
transistor models, will simulate out-of-the-box, the
following policies should be followed to obtain better
performance from SmartSpice.

New models which follow these policies will also perform
better.

Outline
1. Computation of parametric values

2. Internal node count

3. The noise block

4. Macros instead of functions

5. GMIN!

Policies
1. Compute parametric values only once:

 parameter length = 2;
 parameter width = 3;
 real area;

 analog begin
 area = length * width;
 ….
 end

Here, area is repeatedly computed at each iteration.
However, the computations after the first are unnecessary.

This is because area is derived solely from length and
width which are declared as parameters, it is illegal to
modify their values at runtime (LRM 2.3.1 Sec. 3.4), and
since variable values are retained through subsequent
iterations (LRM 2.3.1 Sec. 5.6.1.3), it is possible to
compute area only once at the start of the simulation.

This change achieves the desired result:

 parameter length = 2;
 parameter width = 3;
 real area;

 analog begin
 @(initial_step) begin
 area = length * width;
 ….
 end
 ….
 end

The event block triggered by the initial_step event
executes only once at the start of simulation (LRM
3.2.1 Sec 5.10.2). Verilog-A also recognizes the
initial_step and categorizes the assigned variables
differently to considerable benefit.

Some models (PSP, BSIMCMG) which directly support
ADMS make insertion of the initial_step simple. These
models use “`define” to provide flexibility for use
outside ADMS:

 `ifdef ADMS
	 	 `define	INITIAL_MODEL	@(initial_model)
	 	 `define	INITIAL_INSTANCE	
 @(initial_instance)
 èlse
	 	 `define	INITIAL_MODEL
	 	 `define	INITIAL_INSTANCE
 èndif

 analog begin
	 	 ÌNITIAL_MODEL	
 begin
 area = length * width;
 …
 end

Get the Best Performance From
Your Verilog-A Model

Application Note

Copyright © 2023 Silvaco Inc.

Copyright © 2023 Silvaco Inc. Page 2

 end

When not targeting ADMS, “`INITIAL_MODEL” and
“`INITIAL_INSTANCE” are substituted by space, which is
not what we want. The following simple change remedies
this:

 `ifdef ADMS
	 	 `define	INITIAL_MODEL	@(initial_model)
	 	 `define	 INITIAL_INSTANCE
 @(initial_instance)
 èlse
	 	 `define	INITIAL_MODEL	@(initial_step)
	 	 `define	 INITIAL_INSTANCE
 @(initial_step)
 èndif

2. Minimize the number of internal nodes.

Because parasitics in the model reduce the speed of
simulation, models are typically implemented with different
levels. The basic level implements fewer parasitics than
the highest level, uses fewer internal nodes for simulation,
and thus simulates faster. The Verilog-A LRM has no
facility comparable to SPICE’s level parameter, so other
means have been discovered to achieve a similar result.
One simple approach is to have a different model name
(module name) for each level. A more complex approach
requires the Verilog-A parser to automatically deduce the
proper level based on the parametric values provided.
These different Verilog-A code styles achieve the result
of different levels from one Verilog-A source model. Two
styles, conditional compliation and node collapse are
discussed below:

In conditional compilation, (e.g. EKV3 model) localized
use of “`ifdef”s provide unique model (module) names
for each level and precise control over the internal
node count:

	 `ifdef	DC
 module xyz (d,g,s,b);
 èndif
 `ifdef RF
 module xyz_rf (d,g,s,b);
 èndif
 ….
 `ifdef RF
 electrical internal_d,
 internal_s, internal_b;
 èndif
 ….
 `ifdef RF
	 	 	 I(internal_d,internal_s)	<+	….;
 èndif
 endmodule

When the module is compiled with “RF” defined, the
unique module name becomes “xyz_rf”, precisely 3
internal nodes are added to the model, and a contribution
across the internal nodes is present. These features
occur conditionally on “RF” being defined, hence the
name conditional compilation. Note the conditional
compilation style is applied during the compilation phase.

In node collapse (e.g. PSP, BSIMCMG) a special
Verilog-A if-then-else construct is employed and the
Verilog-A parser is expected to recognize and then act
on the construct during the simulation setup phase to
differentiate the model into a specific level:

 parameter rg;

 if(rg != 0)
	 		I(g,	internal_g)	<+	V(g,	internal_g)/rg;
 else
	 			V(g,	internal_g)	<+	0;	

In this code, when the parasitic “rg” is non-zero a resistor
with value “rg” is placed between nodes “internal_g”
and “g”. When the parasitic is absent, i.e. “rg” is 0, a
short is made between the nodes by the 0 volt voltage
source. The if-then-else construct forms a switch set by
the constant parameter “rg” and the Verilog-A parser is
expected to recognize during setup that when “rg” is zero
the switch is always “on”, nodes “g” and “internal_g” are
shorted, and thus the two nodes can be collapsed into one,
reducing the node count, Hence the name, node collapse.

While it is true that a zero-volt voltage source shorts its
terminal nodes allowing node collapse, the Verilog-A LRM
specifically reserves the use of a zero-voltage source for
a different purpose. Specifically, when a current probe
is needed a zero-volt source should be used (LRM 2.3.1
Sec 5.4.2.1). Verilog-A does not implement node collapse
but interprets the zero-volt source as per the LRM.

Verilog-A correctly simulates the if-then-else construct,
but neither zero nor non-zero values of “rg” improve
the internal node count. There is always one node for
“internal_g” and, worse yet, an internal branch node is
reserved for current through the voltage source. There
are always three nodes, even when “rg” is zero in which
case only one is necessary.

We recommend searching the Verilog-A model for
this if-then-else construct and replacing it with the
conditional compilation style to reduce the internal
node count where applicable.

Copyright © 2023 Silvaco Inc. Page 3

3. Do not execute the noise block when noise analysis
is not performed.

When noise analysis is not requested, calculations on
behalf of noise analysis are 0 valued and thus can be
avoided. Fortunately noise analysis statements often
appear grouped together in a Verilog-A model:

	 I(…)		<+	white_noise(…);
	 I(…)		<+	white_noise(…);
 ….

And this simple solution avoids perfoming the calculations
until needed:

 if (analysis(“noise”)) begin
	 	 I(…)		<+	white_noise(…);
	 	 I(…)		<+	white_noise(…);
 ….
 end

4. Use macros instead of function calls where it makes
sense:

Function calls are expensive to execute. When a function
is frequently called replace it with a macro:

 analog function real myexp;
 input x;
 real x;
 begin
 myexp = exp(x);
 end
 endfunction

 analog begin
 y = myexp(z);
 end

This can easily be changed into a macro expansion:

	 `define	myexp(_x)	(exp(_x_))

 analog begin
 y = `myexp(z);
 end

5. Watch out for GMIN!

Models that require a value for “gmin” may hard-code a
“gmin” value into the model:

	 `define	GMIN	1.0e-12

or

	 parameter	real	GMIN	=	0.0;

In this case, the SmartSpice option for changing circuit
“gmin” will not reach the model. Make the model respond
to the smartspice “gmin” option by replacing references
to GMIN with:

 $simparam(“gmin”)

Conclusion
Applying the five described policies to your Verilog-A
model results in optimal code for the best simulation
performance in SmartSpice. Application of the policies
to existing models can often be completed in as little as
thirty minutes by an engineer familiar with the Verilog-A
language. This is easily recovered by the savings in
simulation time through the optimized model.

Rev 050714

