
Copyright © 2023 Silvaco Inc. Page 1

Introduction
In recent years, Verilog-AMS Hardware Description
Language (Verilog-A) has been widely used in analog
and mixed-signal design. Correspondingly, most EDA
vendors provide simulation tools for Verilog-A. As one of
those vendors, SIMUCAD also added support of Verilog-A
in SmartSpice several years ago. Recently, some
improvements have been made to the Verilog-A parser in
SmartSpice, which can help to improve the performance
of design simulation and project management. In this
application note, those improvements will be introduced
in detail, so users can understand better and take full
advantage of the tool.

File Management Improvement
In SmartSpice, the Verilog-A parser needs to generate
some files after processing the user’s source code.
Originally, those files were stored at the same location
as the project file. The mix of input and output files
could make it inconvenient for project management. To
solve this issue, an improvement has been made in the
SmartSpice Verilog-A parser. The improved Verilog-A
parser creates a directory tree under the project file
location and writes all resulting files to this directory. The
directory tree will be created as shown in Fig. 1.

For example, for project file=./test.in, Verilog-A Parser
version=1.6.19.R, S_MACHINE=x86-nt, the Verilog-A
parser will create a directory tree as shown in Fig.
2. With this directory tree, input and output files are
separated, and it will be easy to manage the resulting
files generated by the Verilog-A parser.

Reuse of Verilog-A Parser Results
When SmartSpice encounters a file coded in Verilog-A
(in non-“SCI” mode), its Verilog-A parser processes
the file and generates shared libraries that will be used
by SmartSpice in simulation. Generating those shared
libraries could be very time consuming. Processing
an unchanged Verilog-A file in every simulation is
unnecessary and wastes time. An enhancement has been
made in SmartSpice where by shared libraries are now
reusable. If a Verilog-A source file and its dependent files
didn’t change, the shared libraries generated before from
this file can be reused without preprocessing by the parser.
Therefore a Verilog-A file just needs to be processed
once by the Verilog-A parser, while its results can be used
repeatedly in SmartSpice shortening processing time.

From SmartSpice output messages, it is easy to know
whether the Verilog-A parser is used to process a file or
previous results are reused. For example, the following
message:

(VERILOGA): Compiling file ‘D:\test_case\
laplace.va’.

Know More About Verilog-A Parser
in SmartSpice

Application Note

Copyright © 2023 Silvaco Inc.

Fig. 1 Directory Tree Pattern.

Fig. 2 Directory Example

Project File Directory
|

SimucadVLG
|

Verilog-A Parser Version Number
|

Platform name (set by ‘S_MACHINE’)

./test.in
|

SimucadVLG
|

1.6.19.R
|

x86-nt

Copyright © 2023 Silvaco Inc. Page 2

shows that file “laplace.va” is processing by the Verilog-A
parser, while the message below

(VERILOGA): Using existing model(s) from ‘D:\test_
case\laplace.va’.

tells that “lapace.va” doesn’t need to be processed by the
parser because previous results are available for reuse.

Independent Verilog-A Parser
Previously, the Verilog-A parser was not an independent
program. It was just a module of SmartSpice and could
only be called by SmartSpice. Also, any new Verilog-A
version would require reinstalling SmartSpice. In current
SmartSpice, the Verilog-A parser is an independent
program, which can be called by SmartSpice or run
independently. Thus, one can run just the parser to
process Verilog-A files without using SmartSpice, and
the shared libraries generated by the parser can be
directly used by SmartSpice in simulations. Also, when
a new version of the Verilog-A parser is available, only
the parser needs to be installed while SmartSpice
remains unchanged, which makes maintenance easier.
Furthermore, an independent Verilog-A parser can
process multiple files with just one command line. For
example, shell command:

 > veriloga –l *.va -vcc

will process all Verilog-A files in the current working
directory, which is both powerful and simple.

Several things are worth mentioning in running the
Verilog-A parser from command line. First, among
those options, “-l” is better to be set always since the
log files generated by Verilog-A parser contain useful
information, especially for error debugging. Second, on
Windows, if the environment parameter “LIBVLG_PATH”
isn’t set, the option “-libvlgpath” must be used to specify
the path where the Windows C compiler can get libVLG
library correctly. Third, option “-f” is used to set the file
name displayed in all messages replacing the input file
name. For example, command

 >veriloga –l .\test\example1\example.va
–f example.va –cc

will use “example.va” to replace “.\test\example1\
example.va” in every message displayed. This option
can shorten message length and make it easy to read.
However, this option can not be used if the command line
contains multiple input files.

Like SmartSpice, now users can run specific version of
the Verilog-A parser by using “-V” option in the command
line. For example, shell command

 >veriloga –V 1.6.17.R *.va –vcc

will use Verilog-A parser version 1.6.17.R to process
files. If the version specified is not installed, the following
message will appear:

 “Command line –V “1.6.17.R” not found.
 Exiting.

Available versions for this platform are: 1.6.15.R and
1.6.13.R.

When processing Verilog-A files from SmartSpice, this
message will also appear in the SmartSpice output
window if the libVLG library specified in the SmartSpice
ModelLib configuration file doesn’t have a corresponding
version of the Verilog-A parser installed. The version
match requirement is important. SmartSpice requires that
the loaded libVLG library version matches the Verilog-A
parser version. The version of libVLG library is specified
in the ModelLib configuration file. Generally it is not an
issue since SmartSpice guarantees that the correct
version of the Verilog-A parser will be used. However, if
a user wants to use the Verilog-A parser independently
to process Verilog-A files first, and later reuse those
generated results directly in SmartSpice, then one must
make sure that the version of the Verilog-A parser used
doing the preprocessing matches the libVLG library
version used by SmartSpice. Otherwise, SmartSpice
will call the correct Verilog-A version to process those
Verilog-A files, and the advantage of reusing Verilog-A
parser results will be lost.

Conclusion
In this note, some recent changes made on the
Verilog-A parser of SmartSpice were introduced.
Those improvements make project management easier,
improve simulation performance, and give users more
flexibility. Understanding those improvements will help
users to make better use of the tool and complete their
job more efficiently.

Rev 050614

