
Copyright © 2021 Silvaco Inc. Page 1

Utmost IV currently includes 6 optimizers for parameter
extraction. Selecting an optimizer can sometimes be con-
fusing. This article reviews the optimizers and attempts to
provide some guidelines in selecting an appropriate one.

Optimization tasks are usually divided into two major cat-
egories: local and global. Local optimization assumes that
there is a single minimum of a cost function which needs
to be located. Locating this minimum is relatively simple –
starting from some initial parameter values the optimizer
successively finds search directions and tries to locate
the point with lowest cost function along the search direc-
tions. The choice of good search directions depends on
the initial parameter values and the methods the optimizer
is using to calculate the directions. In contrast, a global
optimization problem assumes that there may be multiple
minima to the cost function and attempts to locate the
global minimum, which is the minimum with lowest value
of the cost function. Global optimization is much more dif-
ficult because of the many possibilities that exist. To make
it feasible, global optimizers normally use randomization
(or stochastic) methods in generating possibilities.

A further distinction between optimization tasks is wheth-
er or not they assume that the cost function has first, and
sometimes second, derivatives. Using derivatives in lo-
cating a minimum may considerably shorten optimization
time, particularly for local optimizers.

The derivatives are often calculated numerically. Howev-
er, in practice, derivatives of model parameters may not
exist or are too expensive to calculate. More importantly
for optimization tasks that rely on simulators, such as

SmartSpice, for calculating the cost function, the numeri-
cal noise generated by the simulator makes it difficult or
impossible to calculate numerical derivatives. Numerical
noise is the result of simulators using some internal algo-
rithmic parameters (e.g. stepsizes, number of iterations
etc.) to reach a numerical solution. Changing model pa-
rameters even by a little amount may cause the algorith-
mic parameters to adapt to this change. The modification
of algorithmic parameters adds some “noise” which may
complicate or prohibit accurate calculations of numerical
derivatives needed for optimization.

Now back to the optimizers included with Utmost IV: Table 1
summarizes the main characteristics of each optimizer.

There are two local optimizers; one uses the Levenberg-
Marquardt (LM) [1], [2] algorithm and the other the Hooke-
Jeeves (HJ) [3] algorithm. LM is a local optimization al-
gorithm that uses first derivatives. It is particularly good
for optimizations in which the first derivative matrix, the
Jacobian, is nearly singular which is often the case in non-
linear models. Because it uses derivatives, it can be quite
fast. For simple models, or when the number parameters
to optimize is small, the LM optimizer may work very well.
The downside of LM is that it requires derivatives which
may be difficult or impossible to calculate in practice be-
cause of numerical noise or because they are too expen-
sive. The HJ optimizer, which does not require derivatives,
is provided as an alternative to LM. HJ belongs to a class
of pattern-search algorithms which, instead of using de-
rivatives, look for patterns in search directions which are
more promising in reducing the cost function.

Guide to Utmost IV Optimizers

Application Note

Copyright © 2020 Silvaco Inc.

Table 1. Comparison of Utmost IV Optimizers.

Optimizer Local/Global Uses derivatives Stochastic
Levenberg-Marquardt Local Yes No
Hooke-Jeeves Local No No
Simulated Annealing Global No Yes
Parallel Tempering Global No Yes
Genetic Algorithm Global No Yes
Differential Evolutions Global No Yes

Copyright © 2021 Silvaco Inc. Page 2

The other 4 optimizers in Utmost IV are global optimiz-
ers and are all using randomization (stochastic) methods
in generating parameter values to examine. Because of
their stochasticity, repeating the same optimization with
the same optimizer, may result in locating a different
minimum. This is an advantage of randomization, as a
second attempt may succeed even if the first failed.

The Simulated Annealing (SA) algorithm[4] mimics a
physical system in equilibrium at some temperature. The
cost function replaces the energy, and the “temperature”
is just a control parameter in the optimization. At higher
“temperatures”, it is more probable to find parameter
values which produce high cost. This is advantageous
at initial stages of the optimization as it causes a more
extensive search. As the optimization proceeds, the sys-
tem cools down and the search becomes more focused
around the global minimum.

SA is a robust algorithm, which may be very powerful
in highly non-linear models with many parameters. The
downside of SA is that can sometime be slow. The Par-
allel Tempering (PT) algorithm [5] is similar to SA, but
instead of gradually reducing the temperature, it keeps
several copies of the system at different temperatures.
Once in a while, these copies are exchanged, which is
useful for pulling the system out of local minima and ac-
celerating convergence. PT is particularly useful in situ-
ations where there are many local deep minima where it
can outperform the simpler SA algorithm.

The last two optimizers belong to a class of evolutionary
algorithms. Unlike SA & PT, which mimic a physical system,
the evolutionary algorithms mimic instead evolution of bio-
logical systems. In this class of algorithms, there is a “pop-
ulation” which includes several solutions (“chromosomes”)
to the optimization problem. At each “generation” this popu-
lation goes through a process of selection, in which some
of the members are being dropped because of bad “fitness”
(which is closely related to the cost function) and those who
survive go through a process of “mating” and “mutations”.
In mating, parts of two selected members (the parents) are
combined into one or more “children”. This ensures that the
global optimization is not stuck in some local minimum but
continue the search for the global optimum. In mutation,
individual components of each member are being modi-
fied. For the optimization process, mutations make sure
that solution near a minimum keep converging toward that
minimum. The evolutionary algorithms are stochastic: se-
lection, mating and mutations all involve random choices,
much like the biological systems they model.

In Utmost IV, the two members of the evolutionary algo-
rithm class are a Genetic Algorithm (GA) and Differential
Evolution (DE). When the original genetic algorithms were
first invented [6], the representation of solutions was a
string of bits or some other discrete quantities, because of
the biological similarity. These representations are more

appropriate for discrete (combinatorial) optimization. More
recently[7], researchers extended representations of mat-
ing and mutation operators to real valued quantities.

The GA algorithm in Utmost IV incorporates several re-
cent developments.

Unlike genetic algorithms, Differential Evolution [8] was
developed for real-valued representations and is there-
fore suitable for optimizing model parameters. Like other
evolutionary algorithms each generation includes sev-
eral solutions. The main difference between DE and GA
is in the way members of each generation are selected
and modified. Unlike GA, which mate and mutate, DE
first calculates the difference between two (or more) ran-
domly selected members and then stochastically adds
the differences to another randomly selected member.

DE and GA can often be very fast global optimizers.
However, they may depend on tuning of several algorith-
mic parameters to achieve their speed. DE depends on
less algorithmic parameters than GA.

References
[1] Levenberg, K A method for the solution of Certain Non-linear Prob-

lems in Least Squares, Quart. Appl. Math. 2, 164-168, 1944.

[2] Marquard, D An Algorithm for Least-Squares Estimation of Nonlin-
ear Parameters, SIAM J. Appl. Math. 11, 431-441, 1963.

[3] R. Hooke, T. A. Jeeves, Direct Search Solution of Numerical and
Statistical Problems, Journal of ACM, 8, pages 212-229, 1961.4]

[4] S. Kirkpatrick, Gelatt C. D., Vecchi M. P. Optimization by Simulated
Annealing, Science, 220 (671-680), 1983.

[5] C. J. Geyer, in Computing Science and Statistics Proceedings of
the 23rd Symposium on the Interface, American Statistical Asso-
ciation, New York, 1991, p. 156.

[6] J. Holland, Adaptation In Natural and Artificial Systems, University
of Michigan Press, 1975.

[7] A.H. Wright, Genetic Algorithms for Real Parameter Optimization,
in G. Rawlins (Ed.), Foundations of Genetic Algorithms, First Work-
shop on the Foundations of Genetic Algorithms and Classifier Sys-
tems, 1991. Z. Michalewicz, G. Nazhiyath, M. Michalewicz, A Note
on the Usefulness of Geometrical Crossover for Numerical Opti-
mization Problems, Proceedings of the 5th Annual Conference on
Evolutionary Programming, San Diego, CA, 29 February-3 March,
MIT Press, Cambridge, MA, 1996.

[8] Storn, K. Price, Differnetial Evolution – a Simple and Efficient Heu-
ristic for Global Optimization over Continuous Spaces, Journal of
Global Optimization, Kluwer Academic Publishers, 11(341-359),
1997; K. Francken, G.E. Gielen, M. S. J. Steyaert, An Efficient, Ful-
ly Parasitic-aware Power Amplifier Design Optimization Tool, IEEE
Trans. On Circuits and Systems, 52, 8, 1526-1534, 2005.

