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Utmost IV currently includes 6 optimizers for parameter 
extraction. Selecting an optimizer can sometimes be con-
fusing. This article reviews the optimizers and attempts to 
provide some guidelines in selecting an appropriate one.

Optimization tasks are usually divided into two major cat-
egories: local and global. Local optimization assumes that 
there is a single minimum of a cost function which needs 
to be located. Locating this minimum is relatively simple – 
starting from some initial parameter values the optimizer 
successively finds search directions and tries to locate 
the point with lowest cost function along the search direc-
tions. The choice of good search directions depends on 
the initial parameter values and the methods the optimizer 
is using to calculate the directions. In contrast, a global 
optimization problem assumes that there may be multiple 
minima to the cost function and attempts to locate the 
global minimum, which is the minimum with lowest value 
of the cost function. Global optimization is much more dif-
ficult because of the many possibilities that exist. To make 
it feasible, global optimizers normally use randomization 
(or stochastic) methods in generating possibilities. 

A further distinction between optimization tasks is wheth-
er or not they assume that the cost function has first, and 
sometimes second, derivatives.  Using derivatives in lo-
cating a minimum may considerably shorten optimization 
time, particularly for local optimizers. 

The derivatives are often calculated numerically. Howev-
er, in practice, derivatives of model parameters may not 
exist or are too expensive to calculate. More importantly 
for optimization tasks that rely on simulators, such as 

SmartSpice, for calculating the cost function, the numeri-
cal noise generated by the simulator makes it difficult or 
impossible to calculate numerical derivatives. Numerical 
noise is the result of simulators using some internal algo-
rithmic parameters (e.g. stepsizes, number of iterations 
etc.) to reach a numerical solution. Changing model pa-
rameters even by a little amount may cause the algorith-
mic parameters to adapt to this change. The modification 
of algorithmic parameters adds some “noise” which may 
complicate or prohibit accurate calculations of numerical 
derivatives needed for optimization.  

Now back to the optimizers included with Utmost IV: Table 1 
summarizes the main characteristics of each optimizer.

There are two local optimizers; one uses the Levenberg-
Marquardt (LM) [1], [2] algorithm and the other the Hooke-
Jeeves (HJ) [3] algorithm. LM is a local optimization al-
gorithm that uses first derivatives. It is particularly good 
for optimizations in which the first derivative matrix, the 
Jacobian, is nearly singular which is often the case in non-
linear models. Because it uses derivatives, it can be quite 
fast. For simple models, or when the number parameters 
to optimize is small, the LM optimizer may work very well. 
The downside of LM is that it requires derivatives which 
may be difficult or impossible to calculate in practice be-
cause of numerical noise or because they are too expen-
sive. The HJ optimizer, which does not require derivatives, 
is provided as an alternative to LM. HJ belongs to a class 
of pattern-search algorithms which, instead of using de-
rivatives, look for patterns in search directions which are 
more promising in reducing the cost function. 
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Table 1. Comparison of Utmost IV Optimizers.

Optimizer Local/Global Uses derivatives Stochastic
Levenberg-Marquardt Local Yes No
Hooke-Jeeves Local No No
Simulated Annealing Global No Yes
Parallel Tempering Global No Yes
Genetic Algorithm Global No Yes
Differential Evolutions Global No Yes
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The other 4 optimizers in Utmost IV are global optimiz-
ers and are all using randomization (stochastic) methods 
in generating parameter values to examine. Because of 
their stochasticity, repeating the same optimization with 
the same optimizer, may result in locating a different 
minimum. This is an advantage of randomization, as a 
second attempt may succeed even if the first failed.

The Simulated Annealing (SA) algorithm[4] mimics a 
physical system in equilibrium at some temperature. The 
cost function replaces the energy, and the “temperature” 
is just a control parameter in the optimization. At higher 
“temperatures”, it is more probable to find parameter 
values which produce high cost. This is advantageous 
at initial stages of the optimization as it causes a more 
extensive search. As the optimization proceeds, the sys-
tem cools down and the search becomes more focused 
around the global minimum.

SA is a robust algorithm, which may be very powerful 
in highly non-linear models with many parameters. The 
downside of SA is that can sometime be slow. The Par-
allel Tempering (PT) algorithm [5] is similar to SA, but 
instead of gradually reducing the temperature, it keeps 
several copies of the system at different temperatures. 
Once in a while, these copies are exchanged, which is 
useful for pulling the system out of local minima and ac-
celerating convergence. PT is particularly useful in situ-
ations where there are many local deep minima where it 
can outperform the simpler SA algorithm.

The last two optimizers belong to a class of evolutionary 
algorithms. Unlike SA & PT, which mimic a physical system, 
the evolutionary algorithms mimic instead evolution of bio-
logical systems.  In this class of algorithms, there is a “pop-
ulation” which includes several solutions (“chromosomes”) 
to the optimization problem. At each “generation” this popu-
lation goes through a process of selection, in which some 
of the members are being dropped because of bad “fitness” 
(which is closely related to the cost function) and those who 
survive go through a process of “mating” and “mutations”. 
In mating, parts of two selected members (the parents) are 
combined into one or more “children”. This ensures that the 
global optimization is not stuck in some local minimum but 
continue the search for the global optimum. In mutation, 
individual components of each member are being modi-
fied.  For the optimization process, mutations make sure 
that solution near a minimum keep converging toward that 
minimum. The evolutionary algorithms are stochastic: se-
lection, mating and mutations all involve random choices, 
much like the biological systems they model.

In Utmost IV, the two members of the evolutionary algo-
rithm class are a Genetic Algorithm (GA) and Differential 
Evolution (DE). When the original genetic algorithms were 
first invented [6], the representation of solutions was a 
string of bits or some other discrete quantities, because of 
the biological similarity. These representations are more 

appropriate for discrete (combinatorial) optimization. More 
recently[7], researchers extended representations of mat-
ing and mutation operators to real valued quantities.

The GA algorithm in Utmost IV incorporates several re-
cent developments.

Unlike genetic algorithms, Differential Evolution [8] was 
developed for real-valued representations and is there-
fore suitable for optimizing model parameters. Like other 
evolutionary algorithms each generation includes sev-
eral solutions. The main difference between DE and GA 
is in the way members of each generation are selected 
and modified. Unlike GA, which mate and mutate, DE 
first calculates the difference between two (or more) ran-
domly selected members and then stochastically adds 
the differences to another randomly selected member. 

DE and GA can often be very fast global optimizers. 
However, they may depend on tuning of several algorith-
mic parameters to achieve their speed. DE depends on 
less algorithmic parameters than GA.
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