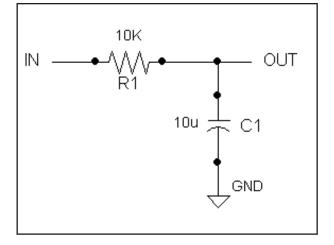


The SPICE netlist format is often a complex way of describing a circuit topology.


SILVACO

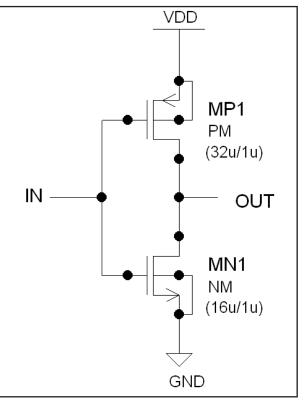
The Verilog-A language provides designers with an alternative method for describing analog circuit blocks. With Verilog-A rich C like syntax and clear growth path, Verilog-A is a suitable successor to a method of describing circuit topologies.

The Verilog-A language is supported by both SmartSpice and Harmony. In SmartSpice, the number of equations to solve a circuit condition can be simplified by replacing certain netlist blocks with Verilog-A equivalent netlists and therefore reducing simulation time. When SmartSpice encounters an active device it must solve a larger number of equations to determine the transistor terminal currents and then use them to solve for the currents in the circuit. By using Verilog-A description a single calculation step gives the currents for the circuit thus avoiding the expensive computation. Verilog-A description allows savings in calculation complexity, system resources and the simulation time.

The following examples show how to represent a SPICE netlist as a Verilog-A module.

Example 1: An RC Circuit

SPICE:


*RC Circuit R1 in out 10k C1 out gnd 10u

Verilog-A

// RC Circuit
module RC(in, out);
inout in;
inout out;
electrical in;
electrical out;
ground gnd;

resistor #(.r(10k)) r1 (in, out); capacitor #(.c(10u)) c1 (out, gnd); endmodule

Example 2: A CMOS Inverter

SILVACO

An Inverter SPICE Netlist *CMOS Inverter	Verilog-A Equivalent Netlist	Pulse Generator Description Using Verilog-A Netlist
MP1 out in vdd vdd	//CMOS Inverter	'include" discipline.h"
+ pch L=1u W=32u	module INVERTER(in,	
MN1 out in gnd gnd	out);	module pwlgen (pwlOut);
+ nch L=1u W=16u	input in;	inout pwlOut;
	output out;	electrical pwlOut;
V1 in gnd		ground gnd;
+ pwl(0, 0, 10e-6, 5)	electrical in;	
	electrical out;	vsource #(.pwl ([0,0 10e-6, 5]) vpwlgen() (pwlOut, gnd);
.model nch NMOS	ground gnd;	
+ level=49		endmodule
.model pch PMOS	PM#(.1(1e-6),.w(32e-6))	
+ level=49	mp1(out,in,vdd,vdd);	Toplevel Testbench
	NM#(.1(1e-6),.w(16e-6))	'include" discipline.h"
.tran 1n 100u	mn1(out,in,gnd,gnd);	'timescale 1ns/1ns
.save v(in) v(out)		
.end	endmodule	
		module testbend();
		electrical in;

pwlgen pwlgen1 (in); rc rc1 (in, out);

endmodule

electrical out;

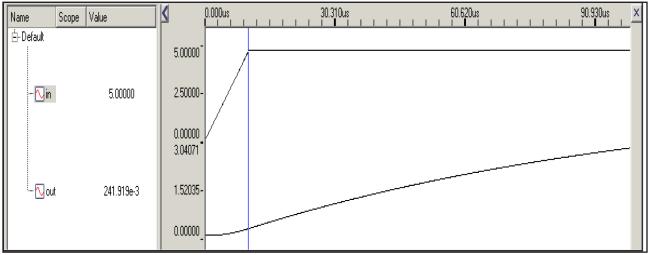


Figure 1. Transient simulation of a pulsed inverter in Harmony of - original SPICE netlist and Verilog-A equivalent netlist show identical results.