엔트리 Gigi Boss

User Probes and Arbitrary Parameter Sweeps in Victory Device

One of the new features in Victory Device is the ability to add user managed parameters to a log file. This can be used when sweeping parameters (manually or in a Deckbuild loop), such as doping, stress, or layer thicknesses, to add the swept parameter to a log file. To do so, simply create a USER probe (with an optional name), and set the parameter USER on the MODELS statement to some value. This parameter (and value) will be added to the log file. The available user parameters are USER1, USER2, USER3, and USER4. The following shows a DeckBuild loop (go victoryd) to simulate the effect of varying STRESS_XX on the mobility.

Quantum Transport Simulation at Atomistic Accuracy of a Nanowire FET

The FET physical dimensions continue to shrink to five nm node and below, characterized by new types of architectures with nanosheet (NS) and nanowire (NW) shapes [3]. The present choice of material is made of Si, Ge, or SiGe alloy thanks to their high carrier concentrations. In compliment to III-V technology envisaged for a while, new 2D materials are also investigated (for example, the TMDs monolayers1). Such nanomaterials and nano-architectures require atomistic simulations for at least two crucial reasons: 1) bulk parameters like the effective masses and forbidden bandgap are no longer pertinent quantities, and 2) the wave nature of charge carriers becomes predominant for predicting transport characteristics including scattering events.

2022 TCAD Baseline Release

New Features in the 2022 Baseline Release:

  • Section 1: Process Simulation – New Features in 2022 Baseline Release
  • Section 2: Device Simulation – New Features in 2022 Baseline Release
  • Section 3: Victory Mesh – New Features in 2022 Baseline Release
  • Section 4: Silver – New Features in 2022 Baseline Release

Victory TCAD 솔루션을 통해 FinFET 및 메모리 애플리케이션에서 정확한 실험 식각 프로파일을 효율적으로 달성

2022년 8월 12일 | 2:00am-2:30am (한국 시각)
이번 시간에, FinFET 및 메모리 애플리케이션에서의 기하학적 식각 모델을 제시합니다. 핀의 형성, 비이상적 식각 프로파일 (휘어짐, 비틀림), 자체 정렬 공정 (멀티 패터닝)을 실현하는 기술을 설명합니다.

Simulation of the High Temperature Performance of InGaN ‘Topping’ Cells

This work reports on the design of a high efficiency InGaN-based two junction (2J) tandem solar cell via numerical simulation, operating at high temperatures (450o C) and under 200 suns for application in a hybrid concentrating solar thermal (CST) system. To address the polarization and band-offset issues for GaN/InGaN heterojunction solar cells, band engineering techniques are employed. A simple interlayer is proposed at the hetero-interface rather than using an In composition grading layer, which is difficult to fabricate. The base absorber thickness and doping concentration have been optimized for 1J cell performance, and current matching was imposed on the series constrained 2J tandem cell design. The simulation results show that the crystalline quality (short recombination lifetime) of current nitride materials is a critical limiting factor the performance of the 2J cell design at high temperatures. The theoretical conversion efficiency of the best devices can be as high as ~21.8% at 450o C and 200X based on the assumed material parameters.

실바코 플로우를 활용한 FPD 및 검출기의 픽셀 어레이 설계 및 시뮬레이션

2022년 7월 1일 | 2:00am-2:30am (한국 시각)
이번 시간에 스키매틱와 레이아웃 편집, 최신 TFT 기술에 요구되는 정확한 필드 솔버 기반 기생 추출, 기생 RC 요소의 넷리스트에 대한 백 애노테이션, 대규모 픽셀 어레이의 빠르고 정확한 SPICE 시뮬레이션을 위해 주요 디스플레이 및 검출기 기업이 실바코 툴을 어떻게 활용하고 있는지 설명합니다.