Hints, Tips, and Solutions – Achieve Publication Quality Plots Using TonyPlot
Yes, TonyPlot has many various display and preference settings that users can adjust, transforming their simulation data into a high quality plot for use in publications.
この作成者はまだ経歴を書いていません。
でも、Ingrid Schwarz さんは、なんと 1528 件ものエントリーに貢献されたことを誇りに思いましょう。
Yes, TonyPlot has many various display and preference settings that users can adjust, transforming their simulation data into a high quality plot for use in publications.
Silicon carbide is expected to be an excellent device material as high voltage and low-loss power devices. Recently, SBD (Schottky Barrier Diode) and MOSFET based on silicon carbide have been realized [1-3], however, those devices have some problems for its reliability and control of the IV characteristics. The problems are related to defects in the bulk and at the interface of insulator/semiconductor. The concentration (~5e12[/cm3]) of the defects is 2 orders higher than that of silicon [4], and so the defects cause degradation of device characteristics. The investigation of the defect property is important for the improvement of the device performance.
The main cause of operational degradation in MOS devices is believed to be due to the buildup of charge at the Silicon-Oxide interface. This leads to reduced saturation currents and threshold voltage shifts in MOSFET devices. Physics-based models of the degradation process typically consider the breaking of Si-H bonds (depassivation) at the Silicon-Oxide interface to be the main cause of the operational degradation. A new general model of Si-H bond breaking has recently been included in Atlas, adding to the Silvaco TCAD portfolio of degradation models[1].
このウェビナーでは、アモルファスシリコン薄膜トランジスタ(a-Si TFT)において、TCADシミュレーションを測定データと比較する場合に用いるキャリブレーションの手順を詳細に取り上げます。
このウェビナーでは、パワー・デバイスの設計、シミュレーションおよび性能最適化をTCADとSPICEシミュレーションにより行う手法について取り上げます。
このウェビナーでは、放射線効果を専門とするエンジニアがシングルイベント効果(SEE)とそれらがデバイスや回路に及ぼす影響のモデリングを行う場合に使用する手法を取り上げます。
A new feature that is introduced in Silvaco’s TCAD applications allows the user to run a parallel simulation on a cluster of computers within a network.
A: The 2 basic commands needed to illuminate a structure in Victory Device are BEAM and SOLVE. A single (or multiple) BEAM statement(s) are specified containing the light source properties. The SOLVE statement is used to execute a BEAM at a user-defined optical intensity.
Wide-bandgap semiconductors such as SiC and GaN have attracted much attention because they are expected to break through the material limits of silicon. In particular, AlGaN/GaN HEMTs are generally promising candidates for switching power transistors due to their high electric field strength and the high current density in the transistor channel giving a low on-state resistance.
We demonstrate the modeling of optical response of exciton-polarons based on the well established Holstein Hamiltonian to model coupled exciton-phonon systems in organic molecular chains. Our approach uses Green’s functions to compute the density of states and the linear optical susceptibility, and thus eliminates the conventional and computationally expensive step of diagonalizing a large Hamiltonian matrix. We exploit this technique further to focus exclusively on the optically active states when computing the linear optical response, and significantly reduce the computational effort to construct the optical susceptibility. In this article, we demonstrate the computation of absorption and emission spectra of Alq3 at 4.2 K and at room temperature using our model. Using the two parameters of the Holstein model, the inhomogeneous broadening energies, and a phenomenological reorganization energy of the solute, we obtain excellent fits to established experimental results. We then use this model inside the larger simulation of a 3-layer organic light emitting (OLED) structure composed of Alq3, Alq3:DCJTB, and α-NPD, which are the electron transport, emissive, and hole transport layers respectively. In our methodology, we also couple the optical response into the rate equations for exciton dynamics in addition to computing the spectrum of light output by the device.
Silvaco uses cookies to improve your user experience and to provide you with content we believe will be of interest to you. Learn detailed information on Privacy Policy. By using this website, you consent to the use of our cookies.
Accept settingsSettingsWe may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
The following cookies are also needed - You can choose if you want to allow them:
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.
Privacy Policy