エントリー - Gigi Boss

Simulation of AlGaInP Multiple Quantum Well LED for Micro Display

The flat panel display industry has been growing rapidly for recent years in mobile display, car display, AR/VR applications, and large-scale TVs display. The core technology enabling these applications is the light emitting diode (LED), which is a key component to realize the highly visible, power efficient, displays. For decades, many researchers have developed blue and green LEDs using wide band gap GaN-based wurtzite crystalline material, and successfully manufactured LED devices. However, to make a bright white LED and/or an integrated RGB display, red and yellow LED is also needed. To accomplish this, a smaller bandgap material like a cubic AlGaInP material can be used.

シルバコ、Teledyne e2vがCMOSイメージ・センサの開発を加速するため、Victory TCADソリューションの採用を拡大すると発表

カリフォルニア州サンタクララ発 – 2022年3月2日 – TCAD、EDAソフトウェア、デザインIPのリーディング・プロバイダであるSilvaco Group, Inc(以下シルバコ)は、本日イメージング・ソリューションのグローバル・リーダであるTeledyne e2vが、CMOSイメージ・センサの開発を加速させるためにシルバコのTCADソリューションVictoryの契約を更新したことを発表しました。

Relating Platinum Diffusion to Minority Carrier Lifetime Control in PiN Diode: Coupled TCAD Process and Device Simulation

Platinum and gold are widely used as an effective method to control lifetime in silicon-based devices [1, 2, 3]. Platinum and gold are introduced as recombination centers to improve switching performance. Thermal diffusion is primarily used as the common method to introduce platinum or gold dopants into silicon. There is interest to better understand how the processing conditions for Pt/Au diffusion can affect switching behavior. Control and shaping of the profile is critical to obtain optimum device performance. In this article, Silvaco Victory TCAD tools [4] [5] are used to predict the effect of platinum on a PiN diode’s reverse recovery time (Trr). The simulated platinum profile from process simulation is automatically fed into the device simulator, and the relationship between platinum diffusion processing parameters and Trr is effortlessly studied.

How to Improve Physical Verification Productivity with SmartDRC/LVS

2022/2/18 | 3:00 am – 3:30 am (JST)
SmartDRC/LVSは、シルバコのレイアウト・エディタExpertおよび回路図エディタGatewayに統合されています。これにより設計上の問題やデザイン・ルール違反をピンポイントで可視化し、迅速に解決することができます。SmartLVSでは、レイアウトからネットリストを抽出し、回路図とレイアウトを相互に比較する機能を提供します。

Enabling the Rapid Development of SiC Superjunction-MOSFETs in Collaboration with mi2-factory

Introduction
Super-junction based devices are a key enabling technology for power devices. Adjacent columns of p and n-type doped material with optimized doping levels enables box-like electric fields, maximizing the breakdown voltage. As the doping of the columns is comparatively high, the on-state losses can be minimized.
Fabrication of such structures in SiC can be particularly challenging. Ideally the p and n-type columns will be uniformly doped. Fluctuations in doping can cause local electric field variation causing the breakdown voltage to be less than ideal. Super-junction structures can be conceived in a number of ways, but current schemes all present challenges [1] in SiC. The simplest method, as used with silicon is to use multiple implants and epitaxy steps. This is quite impractical with SiC due to the low diffusivity of dopants, requiring many sequential implantation steps. Trench etch and refill is an alternative scheme but provides its own challenges with regards to charge control and quality of the trench re-fill.