エントリー - Gigi Boss

TCAD Modeling of Amorphous Selenium-based Avalanche Photon Detectors

Abstract— Silvaco TCAD simulations are employed to identify relevant current carrying mechanisms in amorphous selenium (a-Se) based detectors, using parameters obtained from experimental data, density functional theory calculations, and in-house bulk Monte Carlo simulations. The steady-state dark current behaviors in various a-Se detectors are analyzed by identifying all relevant current conduction mechanisms (e.g., space-charge limited current, bulk thermal generation, Schottky emission, Poole-Frenkel activated mobility and hopping conduction), as well as “acceptor” and “donor” defect density of states located in the forbidden band gap of a-Se. The theoretical models are validated by comparing them with experimental steady-state dark current densities in avalanche and non-avalanche a-Se detectors.

Singular Point Source MOS Cell Concept (S-MOS) Implemented on a Narrow Mesa Trench IGBT

Abstract— A Singular Point Source MOS (S-MOS) cell concept suitable for power MOS based devices is presented. The S-MOS differs from a standard Planar or Trench MOS cell in the manner by which the total channel width per device area is devised. The S-MOS single cell channel width is defined as the peripheral length of a line running approximately along the N++ source and P channel junction which is positioned on a gated trench side-wall. The length of the line is established from a singular point implant source for forming the N++ source region which geometrically corresponds to the shape of the N++/P junction. The N++ and PChannel profiles achieved are similar to those for a planar cell, but for the S-MOS, they are situated on a trench side-wall. The total device channel width will therefore depend on the total number of gated trench side-walls per chip. The S-MOS provides a unique approach for MOS cell layout designs and is applicable to different MOS based power devices. In this paper, the S-MOS is implemented on a 1200V IGBT by means of 3D-TCAD simulations while providing results highlighting the potential advantages with respect to the device static and dynamic performance.
Keywords – MOS cell, Insulated gate bipolar transistors.

A Comprehensive Oxide-Based ReRAM TCAD Model with Experimental Verification

Abstract—During the last few years, oxide-based ReRAM technology has attracted intense industrial and scientific research interest. Therefore, we have performed an in-depth computational study with a focus on data retention besides the resistive switching and the current run-away. Our newly developed comprehensive TCAD (Technology Computer Aided Design) model provides deep insight into the underlying microscopic processes and is validated against experimental data as an accurate and predictive simulation tool.

iDEAL Semiconductor、次世代高効率パワー・デバイスの開発にシルバコの Victory TCADソリューションを採用

カリフォルニア州サンタクララ発 – 2021年9月2日 – Silvaco Group, Inc.(以下シルバコ)は、本日iDEAL Semiconductorが、次世代の高効率パワー・デバイスの研究開発を加速するために、シルバコのVictory TCAD ソリューションを採用したことを発表しました。

Simulation of Silicon and Perovskite Based Tandem Solar Cells Using TCAD

3端子の高効率タンデム・モデルにおけるIBCモデルとPSCモデルの統合について説明するとともに、2端子および3端子のソリューションについて回路設計の観点から検討し、そのメリットとデメリットについて議論します。最後に、単接合バンドギャップ太陽電池の効率限界を超えるタンデム太陽電池の設計を紹介します。