soiex13.in : 3D PD-SOI MOSFET Analysis for RF CMOS Applications
Requires: Victory Process - Victory Device
Minimum Versions: Victory Process 7.30.4.R, Victory Mesh 1.4.6.R, Victory Device 1.14.1.R
By default Victory Process and Device run on just one processor. To ensure better performance on your computer, the following simulation condition simflags="-P all" could be specified in the go line starting Victory Process or Device. This means that all processors available will be used. If you want to use a smaller number of processors, you can substitute "all" with a desired number, e.g. simflags="-P 4".
This example demonstrates advanced 3D process and device simulations of a 180-nm Partially Depleted (PD) Silicon-on-Insulator (SOI) MOSFET with body contact , aimed for Radio-Frequency (RF) CMOS applications. It is related to the article
[1] "Optimization of PD-SOI CMOS Process and Devices for RF Applications" (Silvaco Simulation Standard, Vol. 28, No. 1, 2018) .
RF SOI-CMOS is an important technology used in wireless applications such as tuners and power amplifiers, which can involve switching high power levels at high frequencies (GHz). Hence, requirements of lower insertion loss, better isolation, and better linearity have driven the RF CMOS-SOI design.
In this example, the key design parameters for RF-CMOS are computed, which include:
- "on-resistance" (Ron) , mainly related to the channel resistance of a FET;
- "off-capacitance" (Coff) , associated with isolation between ports of a switch. Coff is a combination of a number of linear (interconnects) and nonlinear (gate, gate-to-source/drain, junctions, buried oxide) capacitances;
- breakdown voltage (BV).
Ron*Coff is a key figure-of-merit for RF switch application. MOSFET channel length reduction along with necessary adjustments to doping profile can improve Ron*Coff, while achieving the required BV value.
3D TCAD computation of all the above parameters is demonstrated in this example.
3D Advanced Process Simulation of a PD-SOI MOSFET
First, Victory Process tool is used to build the device structure, by advanced, physics-based simulations. The simulated PD-SOI process and devices are similar to the ones described in the reference [2]:
[2] H. Lee, et al., "Analysis of body bias effect with PD-SOI for analog and RF applications," Solid-State Electronics, vol. 46, 2002, pp. 1169-1176.
The key process features are: the silicon film thickness of 100 nm, buried oxide (BOX) thickness of 100 nm, gate oxide 3.8 nm thick, and 180-nm gate length of the dual poly (n+/p+) gate. The process steps simulated by Victory Process include: shallow trench isolation (STI) etch, boron implant for the threshold voltage (Vth) adjustment, arsenic implant for LDD and source/drain (S/D) of NMOSFET, rapid thermal annealing (1000 deg C). The threshold voltage adjusting ion implant dose is selected to obtain desired Vth.
The PD-SOI MOSFET with body contact outside the channel is simulated with a 3D model, using a layout based on [2]. Due to symmetry, only half of the entire MOSFET device can be modeled, which saves the simulation time.
3D Numerical Mesh
Next, the Silvaco new Victory Mesh tool is used for appropriate 3D meshing of the structure. Based on the shapes of materials (boundaries) and doping profiles, a locally-refined 3D mesh is generated to appropriately resolve all the 3D geometrical features and the electrical intricacies of the device. The remeshing procedure in Victory Mesh is highly automated.
3D Device Simulations
Then, a number of different device characteristics are simulated using Victory Device simulator, which include:
- Specification of materials, models, and simulation parameters
- Simulation of steady-state Id-Vg characteristics (which allow to determine Vth and DIBL), Id-Vd characteristics (which allow to determine Ron), and breakdown voltage (BV) characteristics
- Computation of small-signal (AC) capacitance-voltage (C-V) characteristics, which allow to determine Coff
- Display of the results in TonyPlot
First, the initial solution is obtained (for zero bias). Then, the Id-Vg transfer characteristics are computed, for selected Vds voltages, from which the threshold voltage (Vth) can be extracted.
Next, the Breakdown I-V characteristic of the 180nm PD-SOI body-tied MOSFET is computed, for the gate bias Vg = 0 V.
Small-signal (AC) Capacitance-Voltage (C-V) Characteristics
As next step, small-signal (AC) 3D TCAD simulations are performed using Victory Device, to obtain C-V characteristics of all the intrinsic capacitances of the MOSFET device. In this example, we demonstrate computation of the Capacitances vs. Gate Voltage (C-Vg) characteristics, which allows to determine the components of Coff (see [1]).
The I-V and C-V curves are plotted using the Silvaco TonyPlot tool.
To load and run this example, select the Load button in DeckBuild > Examples. This will copy the input file and any support files to your current working directory. Select the Run button in DeckBuild to execute the example.
Input Deck
# (c) Silvaco Inc., 2019 # soiex13.in : 3D PD-SOI MOSFET Analysis for RF CMOS Applications # NOTE: # By default Victory Process and Victory Device run on just one processor. # To ensure better performance on your computer, you can specify # simflags="-P all" # in the 'go' line starting Victory Process or Device. # This means that all processors available will be used. # If you want to use a smaller number of processors, you can # substitute "all" with a desired number, e.g. # simflags="-P 4" go victoryprocess simflags="-P 1" # Upper boundary of the layout area used: set Ymax=0.63 init material=silicon mask=soiex13.lay depth=2 gasheight=1 \ dopants=boron dopingvalues=1e15 from="0, 0" to="1.26, $Ymax" line x location=0 spacing=0.09 line x location=0.09 spacing=0.09 line x location=0.27 spacing=0.09 line x location=0.54 spacing=0.01 line x location=0.63 spacing=0.02 line x location=0.72 spacing=0.01 line x location=0.99 spacing=0.09 line x location=1.17 spacing=0.09 line x location=1.26 spacing=0.09 line y location=0 spacing=0.09 line y location=0.18 spacing=0.09 line y location=0.27 spacing=0.09 line y location=0.36 spacing=0.09 line y location=0.54 spacing=0.09 line y location=0.72 spacing=0.09 line y location=0.9 spacing=0.09 line y location=1.08 spacing=0.09 line y location=1.26 spacing=0.09 line z location=-0.4038 spacing=0.01 line z location=-0.3838 spacing=0.01 line z location=-0.2938 spacing=0.02 line z location=-0.2038 spacing=0.00095 line z location=-0.2 spacing=0.00095 line z location=-0.15 spacing=0.02 line z location=-0.1 spacing=0.01 line z location=-0.05 spacing=0.02 line z location=0 spacing=0.01 line z location=0.2 spacing=0.05 line z location=2 spacing=0.5 # Create Buried Oxide deposit material=oxide thickness=0.1 max # Create Active Silicon Film deposit material=silicon thickness=0.1 max # Trench Etch etch material=silicon thickness=0.15 max mask=ACTIVE etch material=oxide thickness=0.15 max mask=ACTIVE etch material=silicon thickness=0.2 dry mask=ACTIVE angle=86 deltacd=0.0002 # Grow Oxide and Trench Fill - No point in doing real oxidation deposit material=oxide thickness=0.0038 max #export structure=deposited_oxide.str # Vt Adjust Implant set vt_dose=2.6e12 set vt_ions=1e5 implant boron energy=15 dose=$vt_dose tilt=7 rotation=27 bca n.ion=$vt_ions implant boron energy=15 dose=$vt_dose tilt=7 rotation=117 bca n.ion=$vt_ions implant boron energy=15 dose=$vt_dose tilt=7 rotation=207 bca n.ion=$vt_ions implant boron energy=15 dose=$vt_dose tilt=7 rotation=297 bca n.ion=$vt_ions diffuse time=2 temperature=1000 # Poly Gate deposit material=polysilicon thickness=0.09 max etch material=polysilicon thickness=0.1 max mask=GATE export 2D structure=2Dcut.str y=$Ymax extract init infile="2Dcut.str" extract name="Vt-adjust implant dose (x4) [1/cm2] " $vt_dose extract name="Vt implant n.ions " $vt_ions # LDD Implant implant arsenic energy=10 dose=2.6e12 tilt=7 rotation=27 bca n.ion=1e5 implant arsenic energy=10 dose=2.6e12 tilt=7 rotation=117 bca n.ion=1e5 implant arsenic energy=10 dose=2.6e12 tilt=7 rotation=207 bca n.ion=1e5 implant arsenic energy=10 dose=2.6e12 tilt=7 rotation=297 bca n.ion=1e5 diffuse time=2 temperature=1000 # Spacer around Poly Gate deposit material=nitride thick=0.09 conformal curved etch material=nitride thickness=0.1 max mask=GATE deltacd=0.09 etch material=nitride thickness=0.1 max mask=GATE reverse deposit material=polysilicon thickness=0 max etch material=polysilicon mask=GATE thick=0.3 max # SD Implant implant arsenic energy=20 dose=1e15 tilt=0 rotation=0 bca n.ion=4e5 diffuse time=2 temperature=1000 # Etch Polysilicon etch material=polysilicon thickness=0.3 max mask=P_PLUS etch material=nitride thickness=0.3 max mask=P_PLUS # P well Contact Implant mask mask=P_PLUS deltacd=0.09 implant boron energy=5 dose=1e14 tilt=0 rotation=0 bca n.ion=4000000 strip material=barrier diffuse time=0.417 temperature=1000 # Contact Etch mask mask=CONT reverse etch material=oxide thickness=0.0538 min deposit material=aluminum thickness=0.2038 min strip material=barrier Electrodes mask=CONT material=aluminum # Save files for Victory Mesh remeshing save name=soiex13_VProc ################################################################### go victorymesh simflags="-P 1" load in=soiex13_VProc remesh conformal save out=soiex13_VMesh tonyplot3d soiex13_VMesh.str -set soiex13_mesh.set tonyplot3d soiex13_VMesh.str -set soiex13_net.set ################################################################### go victorydevice simflags="-P 1" # Current Scaling to account for the actual Gate Width (192um) set CurrScal = 192/0.27 mesh infile=soiex13_VMesh.str electrode name=substrate z.min=1.9 z.max=2.1 material material=polysilicon taun0=1e-9 taup0=1e-9 models fermi models material=polysilicon srh models material=silicon consrh shi fldmob method pas norm.scaling.local dvmax=0.05 climit=1e-4 linear.max.iterations=1000 solve init solve previous save outfile=soiex13_3D_0V.str ####################### Id-Vg Characteristics ################## # Unsaturated Id-Vg: at Vd=50mV solve vdrain=0.0001 solve vdrain=0.001 solve vdrain=0.01 solve vdrain=0.05 log outfile=soiex13_Vd50mV.log solve vgate=0.001 solve vgate=0.01 solve vgate=0.05 vstep=0.05 vfinal=2 name=gate extract name="Vt_@_Vd=50mV " \ (xintercept(maxslope(curve(abs(v."gate"),abs(i."drain")))) \ - abs(ave(v."drain"))/2) extract name="Id_lin " $CurrScal*max(abs(i."drain")) extract name="Vt_lin " x.val from curve ((v."gate"), abs(i."drain")) where y.val=1e-7 extract name="Ron_@_Vd50mV [ohm] " 0.05/($CurrScal*max(abs(i."drain"))) log off #save outfile=Vg2V_Vd50mV.str # Saturated Id-Vg: at Vd=2.0V solve init solve previous solve vdrain=0.0001 solve vdrain=0.001 solve vdrain=0.01 solve vdrain=0.05 vstep=0.05 vfinal=2 name=drain log outfile=soiex13_Vd2V.log solve vgate=0.001 solve vgate=0.01 solve vgate=0.05 vstep=0.05 vfinal=2 name=gate extract name="Id_sat " $CurrScal*max(abs(i."drain")) extract name="Vt_sat " x.val from curve ((v."gate"), abs(i."drain")) where y.val=1e-7 extract name="Ron_@_Vd2V [ohm] " 2.0/($CurrScal*max(abs(i."drain"))) log off #save outfile=Vg2V_Vd2V.str tonyplot -overlay soiex13_Vd50mV.log soiex13_Vd2V.log ##################################################################### #### #### Small-signal (AC) Analysis for Capacitance-Voltage (C-V) Char. #### ################ CAPACITANCES to determine C_off ################## solve init solve previous log outfile=soiex13_CV.log solve vgate=0 vstep=0.2 vfinal=0.4 name=gate AC freq=1e6 aname=drain extract name="Cds " $CurrScal*y.val from curve(abs(v."gate"),(c."drain""source")) where x.val=0 extract name="Cgs " $CurrScal*y.val from curve(abs(v."gate"),(c."gate""source")) where x.val=0 extract name="Cgd " $CurrScal*y.val from curve(abs(v."gate"),(c."gate""drain")) where x.val=0 extract name="Cgsub " $CurrScal*y.val from curve(abs(v."gate"),(c."gate""substrate")) where x.val=0 extract name="Cdsub " $CurrScal*y.val from curve(abs(v."gate"),(c."drain""substrate")) where x.val=0 log off tonyplot soiex13_CV.log -set soiex13_CVg.set ####################### BREAKDOWN Id-Vd ##################### go victorydevice simflags="-80 -P 1" # Current Scaling to account for the actual Gate Width (192um) set CurrScal = 192/0.27 Load infile=soiex13_3D_0V.str master material material=polysilicon taun0=1e-9 taup0=1e-9 models fermi models material=polysilicon srh models material=silicon consrh shi fldmob impact selb method pas norm.scaling.local dvmax=0.05 climit=1e-4 linear.max.iterations=1000 #solve init solve previous solve vdrain=0.0001 solve vdrain=0.001 solve vdrain=0.01 log outfile=soiex13_BV.log solve vdrain=0.1 solve vdrain=0.25 solve name=drain vstep=0.25 vfinal=100 compl=1e-5 cname=drain save outfile=soiex13_3D_BV.str tonyplot soiex13_BV.log -set soiex13_BV.set extract name="BV [V] " max(abs(v."drain")) log off quit