soiex11.in : 20nm Undoped Channel, Ultra-Thin Body and Buried Oxide Fully Depleted SOI NMOSFET in 3D
Requires: Victory Process / Victory Mesh / Victory Device
Minimum Versions: Victory Process 7.30.4.R / Victory Mesh 1.4.6.R / Victory Device 1.14.1.R
Fully depleted SOI (FDSOI) employing a very thin silicon body on an ultra-thin buried oxide has been considered a potential candidate for aggressive CMOS scaling. Accurate modeling of this kind of FDSOI device necessitates a careful selection of physical models. In this example, 3D device modeling and simulation with Victory Device is demonstrated of a 20nm undoped channel, ultra-thin body and buried oxide FDSOI NMOSFET that is created and meshed using a conformal mesh in Victory Mesh.
Featuring a gate length in the sub-100 nm regime, the FDSOI design is subject to non-local effects such as velocity overshoot. In this respect, the energy balance transport model is favored over the conventional drift-diffusion model. The energy balance model is applicable to electrons by specifying the HCTE.EL parameter in the MODELS statement. For energy balance simulations, it is practical to use the carrier temperature in place of the electric field as the driving force for the field dependent mobility model ( FLDMOB ). The parameter EVSATMOD=0 in the MODELS statement sets the driving force for the high-field saturation model to be electron temperature.
In the ultra-thin channel of the 20nm FDSOI NMOSFET, the significance of quantum confinement of electrons becomes conspicuous. The Bohm quantum potential model allows the quantum confinement effects on electron transport to be included in the simulation by means of the BQP.N parameter of the MODELS statement. The principal quantization direction for Bohm quantum potential can be set to x, y, or z using the BQP.QDIR parameter in the MODELS statement. For the 20nm FDSOI NMOSFET, the direction of quantization is in the Z direction, i.e., BQP.QDIR=Z .
Self-heating effects are common in FDSOI structures due to the low thermal conductivity of the buried oxide. Lattice heating is incorporated in Victory Device through self-consistent solutions of the lattice heat flow equation. The LAT.TEMP flag must be set in the MODELS statement to activate these effects.
The non-local, quantum confinement, and self-heating effects are illustrated by comparing the I-V characteristics of the 20nm FDSOI NMOSFET simulated using the drift-diffusion model with those simulated using the energy balance transport model alone and in combination with the quantum transport and lattice heating models, respectively.
To load and run this example, select the Load button in DeckBuild > Examples. This will copy the input file and any support files to your current working directory. Select the Run button in DeckBuild to execute the example.
Input Deck
# (c) Silvaco Inc., 2019 go victoryprocess init layout=soiex11.lay material=silicon depth=0.06 gasheight=2 \ resolution=0.0015 meshdepth=2 line x location=0.01 spacing=0.002 line x location=0.03 spacing=0.002 line x location=0.05 spacing=0.001 line x location=0.07 spacing=0.001 line x location=0.09 spacing=0.002 line x location=0.11 spacing=0.002 line y location=0 spacing=0.001 line y location=0.02 spacing=0.005 line y location=0.04 spacing=0.001 line z location=-0.037 spacing=0.001 line z location=-0.027 spacing=0.005 line z location=-0.017 spacing=0.001 line z location=-0.015 spacing=0.00025 line z location=-0.01 spacing=0.001 line z location=0 spacing=0.002 line z location=0.02 spacing=0.005 line z location=0.04 spacing=0.001 # SOI Waffer deposit material=oxide thick=0.01 max deposit material=silicon thick=0.005 max # Trench etch dry thick=0.052 mask=TRENCH reverse angle=86 deltacd=-0.003 etch wet thick=0.003 mask=TRENCH reverse deltacd=-0.003 deposit material=oxynitride thick=0 max # Gate Stack deposit material=oxide thick=0.002 max deposit material=polysilicon thick=0.02 max # Gate etch material=polysilicon thick=0.021 mask=GATE max etch material=oxide thick=0.003 dry # Spacer deposit material=nitride thick=0 max etch material=nitride dry angle=82 thick=0.022 mask=GATE deposit material=nitride thick=0.002 conformal curved etch material=nitride dry thickness=0.0023 doping arsenic=1e15 silicon mask mask=ACTIVE reverse implant arsenic energy=1 dose=1e13 tilt=7 rotation=27 strip resist deposit material=aluminum thick=0.002 min etch material=aluminum dry thick=0.003 mask=SD electrodes mask=GATE material=polysilicon electrodes mask=SD material=aluminum electrodes substrate save name=soiex11_vp go victorymesh load in=soiex11_vp remesh conformal save out=soiex11_0.str # Drift-Diffusion go victorydevice mesh infile=soiex11_0.str interf qf=3e10 z.max=-0.0125 interf qf=1e11 z.min=-0.0125 contact name=gate workfunc=4.5 models cvt srh auger bgn print impact selb method pam.gmres norm.scaling.local dvmax=1.0 climit=1.0e-4 solve init solve previous solve vdrain=0.01 solve vdrain=0.05 solve vdrain=0.10 log outfile=soiex11_1_1.log solve vgate=0.0 vstep=0.05 vfinal=1 name=gate log off solve vstep=-0.025 vfinal=0 name=drain log outfile=soiex11_1_2.log solve vdrain=0.001 solve vdrain=0.01 solve vdrain=0.05 solve vstep=0.05 vfinal=1 name=drain log off # Energy Balance go victorydevice mesh infile=soiex11_0.str interf qf=3e10 z.max=-0.0125 interf qf=1e11 z.min=-0.0125 contact name=gate workfunc=4.5 models cvt srh auger bgn hcte.el evsatmod=0 print impact selb method pam.gmres block meinr norm.scaling.local dvmax=1.0 climit=1.0e-4 solve init solve previous solve vdrain=0.01 solve vdrain=0.05 solve vdrain=0.10 log outfile=soiex11_2_1.log solve vgate=0.0 vstep=0.05 vfinal=1 name=gate log off solve vstep=-0.025 vfinal=0 name=drain log outfile=soiex11_2_2.log solve vdrain=0.001 solve vdrain=0.01 solve vdrain=0.05 solve vstep=0.05 vfinal=1 name=drain log off # Energy Balance and Bohm Quantum Potential go victorydevice mesh infile=soiex11_0.str interf qf=3e10 z.max=-0.0125 interf qf=1e11 z.min=-0.0125 contact name=gate workfunc=4.5 models cvt srh auger bgn hcte.el evsatmod=0 print models bqp.n bqp.qdir=z impact selb method pam.gmres block meinr norm.scaling.local dvmax=1.0 climit=1.0e-4 solve init bqp.sc solve previous solve vdrain=0.01 solve vdrain=0.05 solve vdrain=0.10 log outfile=soiex11_3_1.log solve vgate=0.0 vstep=0.05 vfinal=1 name=gate log off solve vstep=-0.025 vfinal=0 name=drain log outfile=soiex11_3_2.log solve vdrain=0.0 vstep=0.0025 vfinal=0.01 name=drain solve vstep=0.01 vfinal=0.05 name=drain solve vstep=0.05 vfinal=1 name=drain log off # Energy Balance, Bohm Quantum Potential and Lattice Heating go victorydevice mesh infile=soiex11_0.str interf qf=3e10 z.max=-0.0125 interf qf=1e11 z.min=-0.0125 contact name=gate workfunc=4.5 models cvt srh auger bgn hcte.el evsatmod=0 print models bqp.n bqp.qdir=z models lat.temp impact selb thermcontact name=substrate ext.temp=300 alpha=1000 method pam.gmres block meinr norm.scaling.local dvmax=1.0 climit=1.0e-4 solve init bqp.sc solve previous solve vdrain=0.01 solve vdrain=0.05 solve vdrain=0.10 log outfile=soiex11_4_1.log solve vgate=0.0 vstep=0.05 vfinal=1 name=gate log off solve vstep=-0.025 vfinal=0 name=drain log outfile=soiex11_4_2.log solve vdrain=0.0 vstep=0.0025 vfinal=0.01 name=drain solve vstep=0.01 vfinal=0.05 name=drain solve vstep=0.05 vfinal=1 name=drain log off tonyplot3d soiex11_0.str -set soiex11_1.set tonyplot soiex11_1_1.log -overlay soiex11_2_1.log soiex11_3_1.log soiex11_4_1.log -set soiex11_2.set tonyplot soiex11_1_2.log -overlay soiex11_2_2.log soiex11_3_2.log soiex11_4_2.log -set soiex11_3.set quit