powerex25.in : Silicon Carbide (SiC) Hybrid Junction Termination Extension (HJTE)
Requires: Victory Process, Victory Mesh, Victory Device/Atlas
Minimum Versions: Victory Process 7.76.1.R, Victory Mesh 1.9.0.R, Victory Device 1.20.0.R or Atlas 5.34.0.R
This example demonstrates a novel edge termination technique for SiC devices known as Hybrid Junction Termination Extension (HJTE).
The input deck provided with this example can be run by either Victory Device or Atlas simulator, by changing the solver name in the command go victorydevice into go atlas. It shows that both device simulator frameworks can be fully compatible in terms of input commands, producing comparable results, and allowing easy transition between Atlas and Victory Device.
The example is inspired from the following publication (with experimental data): A Near Ideal Edge Termination Technique for 4500V 4H-SiC Devices: The Hybrid Junction Termination Extension, Woongje Sung, Member, IEEE, and B. J. Baliga, Life Fellow, IEEE.
Hybrid JTE combines MFZ and RA JTE structures in a single edge termination device allowing near ideal breakdown voltage over a wide range of JTE doses. The device presented in this example shows breakdown at 5100V.
You can view internal physical variables inside the devices, such as electric field, impact generation rates, current density distribution, etc. in Tonyplot. The structure files showing doping profiles, breakdown voltage, etc. are saved and can be visualized in Tonyplot.
The example shows:
1.Process simulation of the SiC edge termination device that includes: a. Layout to drive the Guard rings – spacing and doping profiles are as per the publication. b. Process simulation of complete SiC edge termination structure using Victory Process 2.Remeshing the structure using Delaunay remesh strategy in Victory Mesh. 3.Simulation of Breakdown voltage using Victory Device
Since the device is made using WBG material (SiC), the simulation is run using 128-bit precision (recommended), by setting the option:
go victorydevice simflags="-128"
To optimize simulation runtime, the implant profiles are first created in 1D simulation mode using Monte Carlo implantation model. These 1D profiles are later imported in the main 2D structure. The implantation can be toggled between importing 2D profile and using MC implant in 2D structure directly by uncommenting “implant” statements in the process deck and commenting out the “profile” statement.
To load and run this example, select the Load button in Deckbuild > Examples. This will copy the input file and any support files to your current working directory. Select the Run button in Deckbuild to execute the example.
Input Deck
# (c) Silvaco Inc., 2022 #Following example is inspired from this publication: A Near Ideal Edge Termination Technique for 4500V 4H-SiC Devices: The Hybrid Junction Termination Extension, Woongje Sung, Member, IEEE, and B. J. Baliga, Life Fellow, IEEE #Monte Carlo implantation can be multi-threaded by increasing the number of cores (-P option) in "simflags" statement. # To optimize the simulation, the example performs 1D implantation to get desired doping profile for P+ rings and MFZ (p-) rings, then imports these profiles in the final 2D structure. #1D implant profiles for monte carlo implants of p+ wells and p- float zones go victoryprocess Init meshdepth=3 material=sic-4h depth=2 gasheight=3.5 resolution=0.05 sub.ori=<0001> sub.miscut.theta=4 \ dopant=nitrogen dopingvalue=1e17 rot.sub=0 sub.miscut.phi=0 #add screen ox deposit material=oxide thick=0.0500 max Line z location=0 spacing=0.001 Line z location=2 spacing=0.1 #Implant statements for p- multi float zones (MFZ) implant aluminum dose=3e12 energy=110 bca n.ion=100000 rotation=0 implant aluminum dose=5e12 energy=200 bca n.ion=100000 rotation=0 implant aluminum dose=5e12 energy=290 bca n.ion=100000 rotation=0 implant aluminum dose=5e12 energy=400 bca n.ion=100000 rotation=0 export structure=powerex25_0.str go victoryprocess Init meshdepth=3 material=sic-4h depth=2 gasheight=3.5 resolution=0.05 \ dopant=nitrogen dopingvalue=1e17 deposit material=oxide thick=0.0500 max Line z location=0 spacing=0.001 Line z location=2 spacing=0.1 #Implant: P+ rings and p+ main well (Anode) implant aluminum dose=1.0e14 energy=35 bca n.ion=100000 rotation=0 implant aluminum dose=1.0e14 energy=50 bca n.ion=100000 rotation=0 implant aluminum dose=3.0e14 energy=90 bca n.ion=100000 rotation=0 implant aluminum dose=5.0e14 energy=150 bca n.ion=100000 rotation=0 export structure=powerex25_1.str #Extract statement routine to extract clean 1D implant profiles. go internal extract init infile="powerex25_0.str" extract name="Al_min1" \ min(curve(depth, impurity="Aluminum" material="4h-sic" mat.occno=1 x.val=0)) extract name="ProfileEnd1" \ x.val from curve(depth, impurity="Aluminum" material="4h-sic") where y.val=$Al_min1 #mfz.dat file will store the 1D Aluminum doping for multi-float zone. extract name="Al_tot1" \ curve(depth, impurity="Aluminum" material="4h-sic" mat.occno=1 x.val=0, x.min=0 x.max=$ProfileEnd1) \ outfile="powerex25_0_mfz.dat" extract init infile="powerex25_1.str" extract name="Al_min2" \ min(curve(depth, impurity="Aluminum" material="4h-sic" mat.occno=1 x.val=0)) extract name="ProfileEnd2" \ x.val from curve(depth, impurity="Aluminum" material="4h-sic") where y.val=$Al_min2 #1_pPlus.dat file will store the 1D Aluminum doping for the P-plus well. extract name="Al_tot2" \ curve(depth, impurity="Aluminum" material="4h-sic" mat.occno=1 x.val=0, x.min=0 x.max=$ProfileEnd2) \ outfile="powerex25_1_pPlus.dat" #Visualizing doping profiles for P+ rings and P- Float zones. tonyplot powerex25_0_mfz.dat -set powerex25_set1.set tonyplot powerex25_1_pPlus.dat -set powerex25_set2.set #****************VP structure Build*************** #Single zone JTE with floating field rings = Ring-Assisted JTE # RA-JTE + multiple-floating zone (MFZ-JTE) = hybrid JTE. set xtemp=200 set ori=0001 go victoryprocess init material=sic-4h depth=4 from=0 to=$xtemp at=0.5 \ sub.ori=0001 sub.miscut.phi=4 phosphorus=1e17 gasheight=60 resolution=1 meshdepth=2 set pwidth=4 #mask for P+rings (main ANODE + RA-JTE) specifymaskpoly mask=pplus p="0,0" p="$pwidth,0" p="$pwidth,1" p="0,1" electrode="anode" #********Mask for Ring Assisted JTE*********** set sn=3 set w1=3 set si=1 set s1=3 set n=1 set s=$s1+($n-1)*$si set ws=$pwidth+$s set wp=$ws+$w1 loop steps=6 specifymaskpoly mask=pplus p="$ws,0" p="$wp,0" p="$wp,1" p="$ws,1" add set n=$n+1 set s=$s1+($n-1)*$si set ws=$wp+$s set wp=$ws+$w1 l.end save name=ringMask #**********Mask for P- Single zone + MF zones ***************** set s1=1 set si=1 set sz_gap=0 set sz1=$pwidth+$sz_gap set sz2=$sz1+90 specifymaskpoly mask=pminus p="$sz1,0" p="$sz2,0" p="$sz2,1" p="$sz1,1" set zone_tot=90 set n_zones=10 set zone_seg=$zone_tot/$n_zones set w1=7 set s0=2 set alpha=1.07 set w=$w1 set x1=$sz2+$s0 set x2=$x1+$w set n=1 loop steps=$n_zones specifymaskpoly mask=pminus p="$x1,0" p="$x2,0" p="$x2,1" p="$x1,1" add set n=$n+1 set s=$zone_seg-$w set x1=$x2+$s set w=$w1/(pow($alpha,($n-1))) set x2=$x1+$w l.end save name=powerex25_layout line x loc=0 spac=0.5 line x loc=$xtemp spac=0.5 line z loc=-2 spac=1 line z loc=0 spac=1 line z loc=-30 spac=5 line z loc=-35 spac=2 line z loc=-37 spac=0.03 line z loc=-38.5 spac=0.25 line z loc=-39 spac=0.02 line z loc=-40 spac=0.01 #can do both, epitaxy or deposit. Deposit is a faster simulation step. #epitaxy material=sic-4h thickness=40 time=28 temp=1000 C.Phos=2e15 deposit material=sic-4h thickness=40 c.phos=2e15 sub.ori="0001" sub.miscut.phi=4 max #export structure=epi.str deposit material=oxide thick=0.05 max #Floating zone implant mask "pminus" reverse thick=2 #Profile statement used to input the 1D profile created above. #You can use MC implant instead by uncommenting the implant statements and commenting profile statement. Profile is used for optimizing runtime. Profile infile="powerex25_0_mfz.dat" aluminum lstddev=0.25 # implant aluminum dose=3e12 energy=110 bca n.ion=10000000 rotation=0 # implant aluminum dose=5e12 energy=200 bca n.ion=10000000 rotation=0 # implant aluminum dose=5e12 energy=290 bca n.ion=10000000 rotation=0 # implant aluminum dose=5e12 energy=400 bca n.ion=10000000 rotation=0 export structure=powerex25_02.str strip barrier #P+ well implants + Ring implants mask pplus reverse thick=2 Profile infile="powerex25_1_pPlus.dat" aluminum lstddev=0.3 # implant aluminum dose=1.0e14 energy=35 bca n.ion=10000000 rotation=0 # implant aluminum dose=1.0e14 energy=50 bca n.ion=10000000 rotation=0 # implant aluminum dose=3.0e14 energy=90 bca n.ion=10000000 rotation=0 # implant aluminum dose=5.0e14 energy=150 bca n.ion=10000000 rotation=0 export structure=powerex25_03.str strip barrier deposit material=carbon thickness=2 max #export structure=RA_implant2.str method material=SiC-4H activation.empirical model=fermi material material=4h-sic \ dif.parameter = "streamfermiwithoutfield/Al_A/D" \ dif.parametervalue="0.0" #75% activation. Change dif.parameterValue to change activation%. material material=4h-sic \ dif.param="activation/Al/cact" dif.parameterValue="2.8e17" dif.parameterUnit="1/cm3" DIFFUSE TIME=10 minutes TEMPERATURE=1650 #export structure = annealed.str etch material=carbon dry etch material=oxide dry #export structure = bare.str deposit material=oxide thickness=1 max etch material=oxide left.to.x=4 dry thickness=1 #export structure=contactHole.str deposit material=nickel conformal thickness=1 etch material=nickel right.to.x=4.5 thickness=1 dry #export structure=nickel_cont.str electrode mask=pplus material=nickel electrode name=cathode substrate export structure = powerex25_04.str save name=powerex25_04_sv #**********************Victory Mesh: Remeshing structure**************** go victorymesh load in=powerex25_04_sv remesh delaunay refine max.size=0.75 regions="material:nickel" grading="quadratic" refine max.size=0.75 regions="material:SiO2" grading="quadratic" refine max.size=2 regions="material:4h-sic" grading="quadratic" refine max.junction.size=0.1 max.junction.distance=1 max.junction.distance.size=0.5 refine impurity="donor" max.impurity.factor=1 min.impurity.size=0.4 refine max.interface.size=0.200 interface.regions="material:oxide, material:4h-sic" grading="exponential" refine max.interface.size=0.2200 interface.regions="material:nickel, material:4h-sic" grading="exponential" save out=powerex25_05_sv tonyplot powerex25_05_sv.str -set powerex25_set3.set #*****************************Victory Device: BV Device sim************ go victoryd simflags="-128" mesh infile=powerex25_05_sv.str cylindrical contact name=anode contact name=cathode save outf=powerex25_06.str material material=4H-SiC taun0=5e-9 taup0=1e-10 ni.min=5e01 models srh incomplete impact e.side selb BETAN=1 BETAP=1 AN1=4.0e4 AN2=4.0e4 \ AP1=1.63e7 AP2=1.63e7 BN1=1.67E7 BN2=1.67E7 BP1=1.67E7 BP2=1.67E7 method climit=1e-4 maxtraps=10 itlimit=30 \ ir.tol=1.e-30 ix.tol=1.e-30 solve init solve prev save outf=powerex25_07.str ##BV simulation### solve vanode=0 log outf=powerex25_01.log solve vcathode=0 vstep=0.1 vfinal=2.5 name=cathode solve vstep=0.5 vfinal=20 name=cathode solve vstep=5 vfinal=60 name=cathode solve vstep=5 vfinal=200 name=cathode solve vstep=5 vfinal=500 name=cathode solve vstep=5 vfinal=1000 name=cathode solve vstep=5 vfinal=1500 name=cathode solve vstep=10 vfinal=2000 name=cathode solve vstep=5 vfinal=3000 name=cathode \ compliance=5e-10 cname=cathode solve vstep=5 vfinal=4000 name=cathode \ compliance=5e-10 cname=cathode solve vstep=2 vfinal=5000 name=cathode \ compliance=1e-10 cname=cathode save outf=powerex25_08.str contact name=cathode current solve solve imult ifinal=1e-5 istep=1.2 name=cathode log off save outf=powerex25_09.str tonyplot powerex25_01.log -set powerex25_set4.set tonyplot powerex25_09.str -set powerex25_set5.set tonyplot powerex25_09.str -set powerex25_set6.set quit