powerex24.in : Silicon Carbide (SiC) CoolMOS using Realistic Processing.
Requires: Victory Process - Victory Mesh - Victory Device Minimum Versions: Victory Process 7.76.1.R, Victory Mesh 1.9.0.R, Victory Device 1.20.0.R
In this example, we demonstrate realistic Monte-Carlo implantation, diffusion, activation and oxidation of a silicon carbide (SiC) CoolMOS device. A CoolMOS device is a modification of a standard trench gate design, but with added super-junction features to reduce the compromise between maximum breakdown voltage and low on resistance.
As with all super-junction based devices, the device breakdown and on current (I_on) characteristics are very sensitive to achieving the optimum charge balance in the super-junction region of the device. Charge balance depends on the ACTIVE dopant, not just the implanted doping levels, so care has to be taken to ensure activation levels are correctly simulated. If the super-junction charge balance pinches off the channel at too low a drain voltage, a high breakdown voltage can be achieved, but the on resistance will be too high. Conversely, if the channel pinches off at too high a drain voltage, a high on current can be achieved, but the breakdown voltage will suffer severely.
A secondary effect in these devices that must be taken into consideration, is channel punch through. This effect can be mistaken for early "soft" breakdown, since the effects are similar, but is not the result of impact ionization, merely the reduction of internal barrier heights, to the point where significant current flow occurs. An additional critical part of optimizing this device, was therefore engineering the exact location of the super-junction regions near the active drain metallurgic junction. If the p-doped pillars are located too close to the channel at the drain end, then on current suffers significantly. Place the p-doped pillars too far from the channel at the drain end and early onset punch-through occurs, which looks similar to a soft breakdown.
Also, to ensure near constant gate control of the channel, and to reduce the compromise arising from the angle of the trench, the p-doped pillar adjacent to the active channel was tapered to match the angle of the trench etch, resulting in a near constant p- channel depth.
To load and run this example, select the Load button in DeckBuild > Examples. This will copy the input file and any support files to your current working directory. Select the Run button in DeckBuild to execute the example.
Input Deck
# (c) Silvaco Inc., 2022 # 3D CoolSiC Trench MOSFET go victoryprocess # Initialize Structure INIT material=4h-SiC dopants=nitrogen dopingvalues=1e19 layout=powerex24.lay \ from="0" to="5" at=0.5 gasheight=15 depth=2 resolution=0.1 meshdepth=2 set n_factor=0.9 set p_factor=0.9 set p_pillar=-0.15 # Create basic grid line x location=0 spacing=0.2 line x location=0.9 spacing=0.1 line x location=1.5 spacing=0.05 line x location=1.8 spacing=0.05 line x location=2.5 spacing=0.1 line x location=3.2 spacing=0.05 line x location=3.5 spacing=0.05 line x location=4 spacing=0.1 line x location=5 spacing=0.2 Line y location=0 spacing=0.05 Line y location=5 spacing=0.05 Line z location=-12.4 line z location=-12.2 spacing=0.05 line z location=-6 spacing=0.1 line z location=-3 spacing=0.5 Line z location=0 spacing=0.1 Line z location=2 spacing=0.5 cartesian mask=pColumn spacing=0.1 cartesian mask=nContac spacing=0.1 Interface material1=4H-SiC material2=SiO2 dif.parameter="segregation/N/Trn" \ dif.parametervalue="0/0" Interface material1=4H-SiC material2=SiO2 dif.parameter="segregation/N/Seg" \ dif.parametervalue="0/0" Interface material1=4H-SiC material2=SiO2 dif.parameter="segregation/Al/Trn" \ dif.parametervalue="0/0" Interface material1=4H-SiC material2=SiO2 dif.parameter="segregation/Al/Seg" \ dif.parametervalue="0/0" # n-drift Epitaxy Epitaxy material=SiC-4H thickness=3 time=18 minutes \ dopants=nitrogen dopingvalues=3e16*$n_factor temperature=950 # n-drift multiepitaxy with p-columns implants loop steps=14 # Epi is low n-type Epitaxy material=SiC-4H thickness=0.5 time=3 minutes \ dopants=nitrogen dopingvalues=3e16*$n_factor temperature=950 # These implants form the p+ columns mask mask=pColumn deltacd=$p_pillar Implant aluminum n.ion=200000 dose=1e12*$p_factor energy=320 bca \ rotation=27 tilt=7 temperature=500 Implant aluminum n.ion=200000 dose=1e12*$p_factor energy=320 bca \ rotation=207 tilt=7 temperature=500 Implant aluminum n.ion=100000 dose=5e11*$p_factor energy=140 bca \ rotation=27 tilt=7 temperature=500 Implant aluminum n.ion=100000 dose=5e11*$p_factor energy=140 bca \ rotation=207 tilt=7 temperature=500 Implant aluminum n.ion=50000 dose=2.5e11*$p_factor energy=15 bca \ rotation=27 tilt=7 temperature=500 Implant aluminum n.ion=50000 dose=2.5e11*$p_factor energy=15 bca \ rotation=207 tilt=7 temperature=500 strip material=resist l.end diffuse temp=700 time=10 set dcd=0.03 loop steps=5 # Epi is low p type Epitaxy material=SiC-4H thickness=0.5 time=3 minutes \ dopants=aluminium dopingvalues=1e15 temperature=700 # implants are the same p-dose and energies mask mask=pColumn deltacd=($dcd)+($p_pillar) Implant aluminum n.ion=400000 dose=5e11*$p_factor energy=320 bca \ rotation=27 tilt=7 temperature=500 Implant aluminum n.ion=400000 dose=5e11*$p_factor energy=320 bca \ rotation=207 tilt=7 temperature=500 Implant aluminum n.ion=200000 dose=2.5e11*$p_factor energy=140 bca \ rotation=27 tilt=7 temperature=500 Implant aluminum n.ion=200000 dose=2.5e11*$p_factor energy=140 bca \ rotation=207 tilt=7 temperature=500 Implant aluminum n.ion=100000 dose=1.25e11*$p_factor energy=15 bca \ rotation=27 tilt=7 temperature=500 Implant aluminum n.ion=100000 dose=1.25e11*$p_factor energy=15 bca \ rotation=207 tilt=7 temperature=500 strip material=resist set dcd=(0.03+$dcd) l.end # Etch Trench mask mask=Trench Etch material=4h-SiC dry thickness=3 angle=86 Etch material=4h-SiC wet thickness=0.5 strip material=resist deposit material=oxide thickness=1 min # Trench Oxidation Diffuse time=30 temperature=1250 dryo2 # p contact layer mask mask=p_plus Implant aluminum n.ion=2000000 dose=5e13 energy=60 bca rotation=27 tilt=7 \ temperature=500 Implant aluminum n.ion=2000000 dose=5e13 energy=60 bca rotation=207 tilt=7 \ temperature=500 Implant aluminum n.ion=2000000 dose=5e13 energy=120 bca rotation=27 tilt=7 \ temperature=500 Implant aluminum n.ion=2000000 dose=5e13 energy=120 bca rotation=207 tilt=7 \ temperature=500 strip material=resist # P plus Implant Activation RTA Diffuse time=20 temperature=1800 # n contact layer mask mask=nContac Implant nitrogen n.ion=4000000 dose=1e14 energy=40 bca rotation=207 tilt=7 \ temperature=500 Implant nitrogen n.ion=4000000 dose=1e14 energy=40 bca rotation=27 tilt=7 \ temperature=500 strip material=resist # N plus Implant Activation RTA Diffuse time=10 temperature=1800 # Deposit and Etch-back Polysilicon gate Deposit material=polysilicon thick=1 conformal \ dopants=phosphorus dopingvalues=1e19 # Etch Excess Poly Etch thickness=1.05 dry # Isolation oxide Oxidation Deposit material=oxide thick=0.75 conformal Etch material=oxide mask="T_OUTER" dry thickness=0.8 CORNERRADIUS=0.5 # Depo Alum Deposit material=Aluminum min thickness=1 # Electrodes ELECTRODE NAME=source x=2.5 material=Aluminum ELECTRODE NAME=gate x=2.5 material=Poly ELECTRODE NAME=drain substrate SIMULATIONMODE FLOW.DIM=3D # Save for Victory Mesh SAVE name=powerex24_vp ######### =================== Mesh Creation =================== ######### go victorymesh load in=powerex24_vp remesh delaunay refine max.size=0.3 regions="*" refine max.interface.size=0.02 grading="quadratic" refine max.junction.size=0.05 grading="quadratic" save out=powerex24_0.str tonyplot3d powerex24_0.str -set powerex24_0.set go victorydevice simflags="-80" mesh infile=powerex24_0.str contact name=gate n.poly models material=4H-SiC consrh models material=4H-SiC consrh auger fermi ni.fermi print output band.temp band.param method pas itlimit=50 norm.scaling.local \ px.tol=1e-10 cx.tol=1e-10 pr.tol=1e-20 cr.tol=1e-20 # Vt Unsaturated solve init solve previous solve vdrain=0.1 solve vstep=0.25 vfinal=0.75 name=gate log outfile=powerex24_0.log solve vstep=0.25 vfinal=10 name=gate log off # Vt Saturated solve init solve previous solve name=drain vstep=0.5 vfinal=10 log outfile=powerex24_1.log solve vgate=0 solve name=gate vstep=0.25 vfinal=10 tonyplot powerex24_0.log powerex24_1.log log off go victorydevice simflags="-160" mesh infile=powerex24_0.str models material=polysilicon consrh models material=4H-SiC consrh auger fermi ni.fermi print impact material=4H-SiC selb e.side contact name=gate n.poly output band.temp band.param method pam.gmres itlimit=50 norm.scaling.local \ ir.tol=1.e-45 ix.tol=1.e-45 \ px.tol=1.e-25 pr.tol=1.e-40 \ cx.tol=1.e-25 cr.tol=1.e-33 solve init solve previous log outfile=powerex24_2.log solve name=drain vstep=0.5 vfinal=10 solve name=drain vstep=2 vfinal=150 solve name=drain vstep=25 vfinal=1600 method pam.gmres itlimit=50 norm.scaling.local \ cx.tol=1e-10 px.tol=1e-10 \ ix.tol=1e-33 ir.tol=1e-33 \ cr.tol=1e-21 pr.tol=1e-21 contact name=drain current solve previous solve istep=1.25 ifinal=1e-6 imult name=drain save outfile=powerex24_1.str tonyplot powerex24_2.log -set powerex24_1.set tonyplot3d powerex24_1.str -set powerex24_2.set