powerex14.in : CoolMOS
Requires: SSuprem 4/S-Pisces
Minimum Versions: Athena 5.22.3.R, Atlas 5.34.0.R
This example demonstrates modeling of a CoolMOS power device based on the paper:
P. N. Kondekar et al. "Study of the Degradation of the Breakdown Voltage of a Super-Junction Power MOSFET due to Charge Imbalance", J. Korean Phys. Soc., Vol.48, (2006) pp.624.
It shows:
- Structure definition using Athena
- Reverse Voltage Characteristics using Atlas
The CoolMOS is a novel power Device. In the CoolMOS device, the drift region of a conventional power MOSFET is replaced by a superjunction (i.e. a combination on N- and P- strips in parallel). When the device is on, the N- strip conducts the drain current. When the device is off and a drain voltage is applied, it appears as a reverse bias between the N- and P- strips. A depletion region forms and a relatively small value of Vd fully depletes the drift region. Subsequently the drift region behavior is similar to that of an intrinsic region allowing higher breakdown voltage.
Once constructed, the device reverse characteristics are then simulated in Atlas (SPISCES), and the final results are plotted showing a breakdown voltage higher than 600V.
To load and run this example, select the Load button in DeckBuild > Examples. This will copy the input file and any support files to your current working directory. Select the Run button in DeckBuild to execute the example.
Input Deck
# (c) Silvaco Inc., 2022 ######################################################################### #### The present example is a CoolMOS example based on the reference: #### "Study of the Degradation of the Breakdown Voltage of a Super-Junction #### Power MOSFET due to Charge Imbalance", P. N. Kondekar et al., J. Korean #### Phys. Soc., Vol.48, (2006) pp.624. #### The off-state breakdown voltage is larger than 600V ############################################################################## go athena # line x loc=0.00 spac=0.25 line x loc=3.00 spac=0.10 line x loc=10.00 spac=1.0 # line y loc=39.00 spac=0.5 line y loc=40.00 spac=0.5 # init c.phosphor=1.0e18 orientation=100 space.mult=2 # epitaxy time=10 temp=1200 thickness=39 divisions=79 dy=0.10 ydy=0.00 c.phos=1.0e15 deposit oxide thickness=0.06 div=1 deposit poly thickness=0.35 div=3 deposit oxide thickness=0.35 div=3 deposit photores thickness=1 div=3 etch photores p1.x=3 left etch oxide p1.x=3 left etch poly p1.x=3 left etch oxide p1.x=3 left implant boron dose=1e14 energy=80 etch photores all diffuse time=100 temp=1100 implant arsenic dose=3e15 energy=100 diffuse time=20 temp=1100 deposit oxide thickness=0.5 div=4 etch oxide thickness=0.5 etch start x=0 y=-0.1 etch cont x=0 y=0.8 etch cont x=2.5 y=0.8 etch done x=2.5 y=-0.1 diffuse time=1 temp=1100 deposit alum thickness=1 div=8 etch alum right p1.x=3.5 electrode name=source x=0 electrode name=gate x=5 y=-0.2 electrode name=drain backside go atlas # Super-junction: P-column doping p.type conc=2.0e15 x.min=0.0 x.max=4.0 y.min=1.5 y.max=39.0 uniform save outfile=powerex14_0.str tonyplot powerex14_0.str -set powerex14_0.set models cvt srh print impact selb contact name=gate n.poly # method newton trap maxtraps=10 climit=1e-4 ir.tol=1e-30 ix.tol=1e-30 solve init # # Id-Vg @ Vg = 0V log outf=powerex14.log solve vdrain=0.03 solve vdrain=0.1 solve vdrain=0.25 vstep=0.25 vfinal=2 name=drain solve vstep=1 vfinal=10 name=drain solve vstep=5.0 vfinal=660 name=drain solve vstep=0.25 vfinal=700 name=drain compl=1.e-7 cname=drain outf=powerex14_1.str master onefile extract name="bv" max(v."drain") tonyplot powerex14_1.str -set powerex14_1.set tonyplot powerex14.log -set powerex14_2.set quit