powerex12.in : modeling Low-Voltage Power MOSFET
Requires: SSuprem 4/DevEdit/S-Pisces
Minimum Versions: Athena 5.22.3.R, Atlas 5.34.0.R
This example demonstrates modeling of Low-Voltage Power MOSFET based on the following reference:
K.Shenai, C.Cavallaro, S.Musumeci, R. Pagano, A.Raciti "Modeling Low-Voltage Power MOSFETs as Synchronous rectifiers in Buck Converter Applications", Industry Applications Conference, 2003. 38th IAS Annual Meeting pp. 1794- 1801 vol.3.
It shows:
- Structure definition using Athena
- Remeshing using DevEdit
- Transfer and Breakdown Voltage Characteristics using Atlas
- Output and AC small signal Characteristics using Atlas
The file starts with the definition of the process flow for a low voltage MOSFET transistor in Athena. Often a mesh that is used for process simulation, is not optimal for use with device simulation. In this example, the mesh generation tool DevEdit is used to recreate a mesh that has zero obtuse triangles in the semiconductor region. It is then refined as a function of a number of solution quantities on the mesh (eg: Nte Doping).
Popup windows under the DeckBuild Command window can be used to create this set of commands to control DevEdit. The DevEdit GUI can be used as well by loading the structure file from Athena, remeshing it using DevEdit GUI and saving a DevEdit command file. The mesh syntax from this file can then be copied and pasted into deckbuild.
In Atlas the transfer characteristic is simulated by setting the Drain Voltage to 25V and ramping the Gate Voltage to 4V. The Threshold Voltage is adjusted using the workf parameter from the contact statement.
In order to simulate the Breakdown Voltage, the initial Athena structure has been modified by providing the body region with a contact, thus, ensuring a short with the source region. This is done directly in Atlas by adding a body contact using the electrode name=body x.min=0 x.max=0 y.min=0.3 y.max=0.6 statement. The breakdown Voltage can be adjusted using the parameter AN2 from the impact statement. To simulate the breakdown curve, the drain electrode is ramped until the current reaches a specified compliance value.
solve vstep=1 vfinal=30 name=drain cname=drain compliance=1
The output characteristic is obtained by ramping the Gate Voltage to the desired value and then ramping the drain voltage from 0V to 5V. The log off statement allows us to save multiple log files.
The body-drain diode behavior has also been simulated. The forward characteristic is dependent on the drain and dource contacts resistance as well as the epi-layer resistance. A drain contact resistance is added using the statement contact name=drain resist=5e03 .
The capacitances are collected by applying a bias ramp on the drain electrode up to 15V. The parameter ac on the solve statement sets the ac analysis on. The frequency of this signal is set to 1MHz.
To load and run this example, select the Load button in DeckBuild > Examples. This will copy the input file and any support files to your current working directory. Select the Run button in DeckBuild to execute the example.
Input Deck
# (c) Silvaco Inc., 2022 # This example is based on the reference: # # K.Shenai, C.Cavallaro, S.Musumeci, R. Pagano, A.Raciti # "Modeling Low-Voltage Power MOSFETs as Synchronous rectifiers in Buck Converter # Applications", Industry Applications Conference, 2003. 38th IAS Annual Meeting # pp. 1794- 1801 vol.3. go athena line x location=0 line x location=0.65 spacing=0.01 line x location=0.7 spacing=0.01 line x location=0.75 spacing=0.01 line x location=1 spacing=0.02 line x location=1.7 line y location=3.5 spacing=0.2 line y location=6.5 spacing=1 init silicon phosphor resistivity=0.001 orientation=100 epitaxy time=240 temp=1000 thickness=1.75 divisions=8 dy=0.2 ydy=1.75 \ c.phosphor=2.7e16 epitaxy time=240 temp=1000 thickness=1.75 divisions=15 dy=0.001 ydy=0 \ c.phosphor=2.7e16 deposit oxide thick=0.0235 divisions=5 dy=0.001 ydy=0.0235 deposit oxide thick=0.0235 divisions=5 dy=0.001 ydy=0 deposit polysilicon thick=0.15 divisions=5 dy=0.001 ydy=0.15 deposit polysilicon thick=0.15 divisions=8 dy=0.001 ydy=0 deposit barrier thick=1 divisions=5 dy=0.001 ydy=0.15 deposit barrier thick=1 divisions=8 dy=0.001 ydy=0 etch barrier left p1.x=0.7 etch polysilicon left p1.x=0.7 implant boron dose=1.8e14 energy=120 s.oxide=0.047 etch barrier all implant arsenic dose=1e15 energy=80 s.oxide=0.047 deposit oxide thick=0.025 divisions=5 dy=0.001 ydy=0.025 deposit oxide thick=0.025 divisions=5 dy=0.001 ydy=0 diffus time=60 temp=1000 nitro etch oxide left p1.x=0.65 deposit aluminum thick=0.25 divisions=5 dy=0.001 ydy=0.047 deposit aluminum thick=0.25 divisions=5 dy=0.001 ydy=0 etch aluminum right p1.x=0.75 electrode name=source x=0.4 electrode name=gate x=1 electrode name=drain bottom struct outfile=powerex12_0.str tonyplot powerex12_0.str -set powerex12_0.set # remesh before Device simulation go devedit init inf=powerex12_0.str # Set Meshing Parameters base.mesh height=0.2 width=0.2 bound.cond !apply max.slope=28 max.ratio=300 rnd.unit=0.001 line.straightening=1 align.points when=automatic imp.refine imp="Net Doping" scale=log imp.refine min.spacing=0.02 constr.mesh max.angle=90 max.ratio=300 max.height=10000 \ max.width=10000 min.height=0.0001 min.width=0.0001 constr.mesh type=Semiconductor default constr.mesh type=Insulator default constr.mesh type=Metal default constr.mesh type=Other default constr.mesh region=2 default max.height=0.01 constr.mesh id=1 x1=0.8 y1=0 x2=1.1 y2=0.2 default max.height=0.02 Mesh Mode=MeshBuild structure outf=powerex12_1.str # transfert Characteristics go atlas mesh infile=powerex12_1.str width=2e6 models consrh cvt fermi contact name=gate workf=4.37 solve init solve previous solve vdrain=0.05 solve vdrain=1 solve vstep=1 vfinal=25 name=drain log outfile=powerex12_0.log solve vstep=0.2 vfinal=4 name=gate tonyplot powerex12_0.log -set powerex12_1.set # Breakdown Voltage go atlas mesh infile=powerex12_1.str width=2e6 electrode name=body x.min=0 x.max=0 y.min=0.3 y.max=0.6 models srh consrh cvt fermi contact name=gate workf=4.37 impact selb an2=7.03e05*1.25 method climit=1e-04 maxtrap=10 solve init solve previous log outfile=powerex12_1.log solve vdrain=0.05 solve vdrain=0.2 solve vdrain=1 solve vstep=1 vfinal=30 name=drain cname=drain compliance=1 save outf=powerex12_2.str tonyplot powerex12_1.log -set powerex12_2.set tonyplot powerex12_2.str -set powerex12_3.set # Output Characteristics go atlas mesh infile=powerex12_1.str width=2e6 models consrh cvt fermi contact name=gate workf=4.37 solve init solve previous solve vgate=0.5 vstep=0.5 vfinal=3 name=gate log outfile=powerex12_2.log solve vdrain=0.05 solve vdrain=0.2 vstep=0.2 vfinal=5 name=drain log off solve init solve previous solve vgate=0.5 vstep=0.5 vfinal=4 name=gate log outfile=powerex12_3.log solve vdrain=0.05 solve vdrain=0.2 vstep=0.2 vfinal=5 name=drain log off solve init solve previous solve vgate=0.5 vstep=0.5 vfinal=5 name=gate log outfile=powerex12_4.log solve vdrain=0.05 solve vdrain=0.2 vstep=0.2 vfinal=5 name=drain log off solve init solve previous solve vgate=0.5 vstep=0.5 vfinal=10 name=gate log outfile=powerex12_5.log solve vdrain=0.05 solve vdrain=0.2 vstep=0.2 vfinal=5 name=drain tonyplot powerex12_2.log -overlay powerex12_3.log powerex12_4.log powerex12_5.log -set powerex12_4.set # Body Drain diode characteristic go atlas mesh infile=powerex12_1.str width=2e6 electrode name=body x.min=0 x.max=0 y.min=0.3 y.max=0.6 models consrh cvt fermi contact name=gate workf=4.37 contact name=drain resist=5e03 solve init log outfile=powerex12_6.log solve previous solve vstep=-0.1 vfinal=-1.4 name=drain tonyplot powerex12_6.log -set powerex12_5.set # Capacitances simulation go atlas mesh infile=powerex12_1.str width=2e6 models consrh cvt fermi contact name=gate workf=4.37 solve init log outfile=powerex12_7.log solve vstep=0.2 vfinal=4 name=drain ac freq=1e06 solve vstep=1 vfinal=15 name=drain ac freq=1e06 tonyplot powerex12_7.log -set powerex12_6.set